

ELD2-CAN Series Servo Drives User Manual

Revision 1.12

www.leadshine.com

Introduction

Thanks for purchasing Leadshine ELD2 series low-voltage DC servo drives, this instruction manual provides knowledge and attention for using this drive.

Contact tech@leadshine.com for more technical service.

Incorrect operation may cause unexpected accident, please read this manual carefully before using product.

- ♦ We reserve the right to modify equipment and documentation without prior notice.
- ❖ We won't undertake any responsibility with customer's any modification of product, and the warranty of product will be cancel at the same time.

Be attention to the following warning symbol:

indicates that the error operation could result in loss of life or serious injury.

indicates that the error operation could result in operator injured, also make

equipment damaged.

indicates that the error use may damage product and equipment.

Safety precautions

- The design and manufacture of product doesn't use in mechanic and system which have a threat to operator.
- The safety protection must be provided in design and manufacture when using this product to prevent incorrect operation or abnormal accident.

Acceptance

• The product which is damaged or have fault is forbidden to use.

Transportation

- The storage and transportation must be in normal condition.
- Don't stack too high, prevent falling.
- The product should be packaged properly in transportation,
- Don't hold the product by the cable, motor shaft or encoder while transporting it.
- The product can't undertake external force and shock.

Installation

Servo Drive and Servo Motor:

- Don't install them on inflammable substance or near it to preventing fire hazard.
- Avoid vibration, prohibit direct impact.
- Don't install the product while the product is damaged or incomplete.

Servo Drive:

- Must install in control cabinet with sufficient safeguarding grade.
- Must reserve sufficient gap with the other equipment.
- Must keep good cooling condition.
- Avoid dust, corrosive gas, conducting object, fluid and inflammable, explosive object from invading.

Servo Motor:

- Installation must be steady, prevent drop from vibrating.
- Prevent fluid from invading to damage motor and encoder.
- Prohibit knocking the motor and shaft, avoid damaging encoder.
- The motor shaft can't bear the load beyond the limits.

Wiring

- The workers of participation in wiring or checking must possess sufficient ability do this job.
- Ground the earth terminal of the motor and drive without fail.
- The wiring should be connected after servo drive and servo motor installed correctly.
- After correctly connecting cables, insulate the live parts with insulator.

- The wiring must be connected correctly and steadily, otherwise servo motor may run incorrectly, or damage the equipment.
- We mustn't connect capacitors, inductors or filters between servo motor and servo drive.
- The wire and temperature-resistant object must not be close to radiator of servo drive and motor.
- The freewheel diode which connect in parallel to output signal DC relay mustn't connect reversely.

Debugging and running

- Make sure the servo drive and servo motor installed properly before power on, fixed steadily, power voltage and wiring correctly.
- The first time of debugging should be run without loaded, debugging with load can be done after confirming parameter setting correctly, to prevent mechanical damage because of error operation.

- Install a emergency stop protection circuit externally, the protection can stop running immediately to prevent accident happened and the power can be cut off immediately.
- The run signal must be cut off before resetting alarm signal, just to prevent restarting suddenly.
- The servo drive must be matched with specified motor.

- Don't power on and off servo system frequently, just to prevent equipment damaged.
- Forbidden to modify servo system.

Fault Processing

- The reason of fault must be figured out after alarm occurs, reset alarm signal before restart.
- Keep away from machine, because of restart suddenly if the drive is powered on again after momentary interruption(the design of the machine should be assured to avoid danger when restart occurs)

System selection

- The rate torque of servo motor should be larger than effective continuous load torque.
- The ratio of load inertia and motor inertia should be smaller than recommended value.
- The servo drive should be matched with servo motor.

Table of Contents

Introduction	2
Chapter 1 Introduction	8
1.1 Product Introduction	8
1.1.1 Specification and feature	9
1.1.2 Part Numbering Information	10
1.2 Inspection of product	
Chapter 2 Installation	11
2.1 Storage and Installation Circumstance	11
2.2 Servo Drive Installation	11
2.2.1 Installation Method	11
2.2.2 Installation Space	
2.3 Servo Motor Installation	
Chapter 3 Wiring	14
3.1 Wiring	
3.1.1 Wire Gauge	14
3.1.2 Wiring	16
3.2 Drive Terminals Function	17
3.2.1 Control Signal Port-CN1 Terminal	17
3.2.2 Encoder Input Port-CN2 Terminal	
3.2.3 Power Port	
3.2.4 Regenerative resistor Port	19
3.2.5 Communication Port	19
3.2.6 CAN bus connector	19
3.2.7 CAN Node-ID and Baud rate switch	
3.3 I/O Interface Principle	20
3.3.1 Digital Input Interface	20
3.3.2 Digital Output Interface	20
Chapter 4 Parameter	23
4.1 Parameter List	
4.1.1 Drive Parameters (Group 2000h)	23
4.1.2 Manufacturer Parameters (Group 5000h)	26
4.1.3 Device Profile Parameters (Group 6000h)	28
4.2 Parameters Function	30
4.2.1 【Class 0】 Basic Setting	30
4.2.2 【Class 1】 Gain Adjust	
4.2.3 【Class 2】 Vibration Suppression	
4.2.4 【Class 3】 Velocity/ Torque Control	40
4.2.5 【Class 4】 I/F Monitor Setting	41
4.2.6 【Class 5】 Extended Setup	46
4.2.7 【Class 6】 Special Setup	49
4.2.8 【Class 7】 Factory setting	51
4.3 402 Parameters Function	

Chapter 5 CANopen	58
5.1 CAN Interface	58
5.2 CANopen protocol	58
5.2.1 CANopen frame	58
5.2.2 CANopen objects	59
5.3 NMT	60
5.3.1 NMT services	61
5.3.1 NMT error control	62
5.4 SDO	63
5.5 PDO	64
5.6 SYNC	65
5.7 EMCY	65
Chapter 6 Trial Run	67
6.1 Inspection Before trial Run	67
6.1.1 Inspection on wiring	67
6.1.2 Holding brake	67
6.1.3 Inspection on Parameters Setting	68
6.2 ELD2-CAN motion control procedure	68
6.3 CIA 402 State Machine	69
6.4 Common Functions for All Modes	70
6.4.1 Motor Rotation Direction	70
6.2.2 Drive Stop	70
6.4.3 Electronic Gear Ratio	70
6.4.4 Control Word	71
6.4.5 Status Word	72
6.4.6 Drive Enable	73
6.5 Profile position mode	73
6.5.1 Controlword in profile position mode	73
6.5.2 Statusword in profile position mode	
6.5.3 Related objects	75
6.5.4 Example of profile position mode	75
6.6 Profile velocity mode	76
6.6.1 Controlword in profile velocity mode	
6.6.2 Statusword in profile velocity mode	
6.6.3 Related objects	
6.6.4 Example of profile velocity mode	
6.7 Profile torque mode	
6.7.1 Controlword in profile torque mode	
6.7.2 Statusword in profile torque mode	
6.7.3 Related objects	
6.7.4 Example of profile torque mode	
6.8 Homing mode	
6.8.1 Controlword in profile homing mode	
6.8.2 Statusword in profile homing mode	

6.8.3 Related objects	81
6.8.4 Example of homing mode	81
6.8.5 Homing Method	82
6.9 Security Features	96
6.9.1 BRK-OFF output	96
6.9.2 Servo stop mode	98
6.9.3 Emergency stop function	98
6.10 Inertia ratio identification	98
6.10.1 On-line inertia ratio identification	98
6.10.2 Motion Studio inertia ratio identification	98
6.11 Vibration Suppression	99
6.12 Friction torque compensation	101
6.13 Regenerative resister setting	101
6.14 Multi-turn absolute encoder	102
6.14.1 Parameters setting	102
6.14.2 Read absolute position	103
6.14.3 Alarm	104
Chapter 7 Alarm and Processing	105
7.1 Alarm List	105
7.2 Alarm Processing Method	107
Chapter 8 Product Accessory	115
8.1 Accessory selection	115
Contact us	116

Chapter 1 Introduction

1.1 Product Introduction

ELD2-CAN low-voltage DC servo is a special motion control product designed for machines and applications that request a best balance between outstanding and reasonable cost.

Based on CIA DS 301+DSP 402 sub-protocol, it can be seamlessly connected to the controller/drive that supports this standard protocol.

Combined with abundant features like MFC, vibration suppression, Multi-mode filter function etc. It provide machines a compact size, low tuning works, but high resolution encoder up to 23bit, an unique servo system.

Talent features compared with pulse servo:

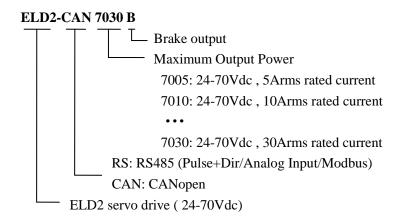
- Reduce communication interference and extend communication distance

 The reliability of pulse communication is reduced because the transmission cable of pulse signal is vulnerable to electromagnetic interference. But CAN bus communication can significantly improve the reliability of communication, reduce the influence of interference on instruction and extend the communication distance due to the error detection, limitation and processing mechanism contained in the protocol.
- The trajectory planning of bus communication servo is realized in the drive. The controller only needs to transfer the target position, speed, acceleration and other information to the drive. Therefore, the drive can predict the motion parameters of the next moment in advance internally, and then take feedforward measures to improve the motion performance.
- ❖ Reduce system wiring complexity Under the pulse communication mode, the controller needs to communicate with each drive through the pulse cable connection, which often leads to the dense and complicated wiring of the machine equipment. Under the CAN bus communication mode, the controller only needs to use the cable connection with one of its drives, and the rest of the drives only need to use the chain mode to connect with the drive.
- ❖ Reduce the number of required control unit ports, thereby reducing the cost Multiple bus servo drive only need one port connect with movement control unit (motion controller or movement control cards), without pulse module, also don't need increases the number of drive control card because there are so many drives, and don't need to consider computer slot number limitation. It can save the cost of pulse module, control card and industrial control machine.

Talent feature:

- Easy tuning
- ◆ Automatic identification for motor
- ◆ Simple, flexible to control
- ◆ RS485/Modbus/CANopen
- Notch filter, damping filter
- Optional feedback

1.1.1 Specification and feature


			Specifications		
Drive model		ELD2-CAN7005B	ELD2-CAN7010B	ELD2-CAN7015B	ELD2-CAN7020B
Size(mm)		140*79.5*25.5	140*79.5*25.5	175*101.5*31	175*101.5*31
Rated power(kv	v)	0.1	0.4	0.6	0.75
Rated current(A	rms)	5	10	15	20
Peak current(A)	peak)	21.2	42.5	45	80
	Voltage(V)		DC24-70(recomm	nended 24-60Vdc)	
Main power	Current(A)	5Arms (≤48Vdc) 3.5Arms (>48Vdc)	10Arms (≤48Vdc) 7Arms (>48Vdc)	15Arms (≤48Vdc) 11Arms (>48Vdc)	20Arms (≤48Vdc) 14Arms (>48Vdc)
Logic power	Voltage(V)				
Control marrian	Voltage(V)	DC12-24			
Control power	Current(mA)	≥12			
Control method		IGBT PWM sinusoidal Wave Drive			
Overload		300%			
Brake resistor		External connection			
Safe function		——			
Protection rank		IP20			

		Specifications
Drive model		ELD2-CAN7030B
Size(mm)		175*101.5*31
Rated power(kw)	1.2
Rated current(Ar	rms)	30
Peak current(Ape	eak)	90
	Voltage(V)	DC24-70(recommended 24-60Vdc)
Main power Curr	Current(A)	30Arms (≤48Vdc) 21Arms (>48Vdc)
Logic power	Voltage(V)	
Control nower	Voltage(V)	DC12-24
Control power	Current(mA)	≥12
Control method		IGBT PWM sinusoidal Wave Drive
Overload		300%
Brake resistor		External connection
Safe function		
Protection rank		IP20

Features	
Communication	CANopen
Modes of operation	Profile Position/Profile Velocity/Profile Torque/Homing
Imputs/Outputs	4 programmable digital inputs
Inputs/Outputs	2 programmable digital outputs
Brake Output (24vdc)	✓
Motor Supported	Brushless/Brushed
Feedback Supported	1000、2500lines incremental TTL signal encoder and 17bit、23bit serial signal encoder
	Encoder(ABZ)+Hall(UVW)、Encoder(ABZ)

1.1.2 Part Numbering Information

1.2 Inspection of product

Check the following thing before using the products:

- a. Check if the product is damaged or not during transportation.
- b. Check if the servo drive & motor are complete or not.
- c. Check the packing list if the accessories are complete or not

The ELD2 series DC servo drive can be matched with a variety of domestic and foreign servo motor.

Matched Motors		
Power Range	Up to 1200W	
Motor Supported	Brushless Brushed	
Voltage Range	24 - 70Vdc	
E 11 1 1	1000. 2500ppr incremental encoder (Encoder(ABZ)+Hall(UVW))	
Feedback supported	17bit/23bit serial signal encoder	
Motor Size	40mm,42mm,57mm,60mm,80mm frame,110mm frame or other size	
Other Requirements	Brake. oil-seal. protection level. Shaft &connector can be customized	

Chapter 2 Installation

2.1 Storage and Installation Circumstance

Table 2.1 Servo Drive, Servo Motor Storage Circumstance Requirement

Item	ELD2 series drive	ELVM low voltage servo motor
Temperature	-20-80℃	-20-60°C
Humility	Under 90%RH (free from condensation)	Under 80%RH(free from condensation)
Atmospheric	Indoor(no exposure)no corrosive gas or	Indoor(no exposure)no corrosive gas or
environment	flammable gas, no oil or dust	flammable gas, no oil or dust
Altitude	Lower than 1000m	Lower than 1000m
Vibration	Less than 0.5G (4.9m/s ²) 10-60Hz (non-continuous working)	
Protection level	IP00(no protection)	IP65

Table 2.2 Servo Drive, Servo Motor Installation Circumstance Requirement

Item	ELD2 series drive	ELDM low voltage servo motor
Temperature	0-55℃	0-40℃
Humility	Under 90%RH(free from condensation)	Under 80%RH(free from condensation)
Atmospheric	Indoor(no exposure)no corrosive gas or	Indoor(no exposure)no corrosive gas or
environment	flammable gas, no oil or dust	flammable gas, no oil or dust
Altitude	Lower than 1000m	Lower than 1000m
Vibration	Less than 0.5G (4.9m/s ²) 10-60Hz (non-continuous working)	
Protection level	IP00(no protection)	IP65

2.2 Servo Drive Installation

- Must install in control cabinet with sufficient safeguarding grade.
- Must install with specified direction and intervals, and ensure good cooling condition.
- Don't install them on inflammable substance or near it to prevent fire hazard.

2.2.1 Installation Method

Install in vertical position, and reserve enough space around the servo drive for ventilation.

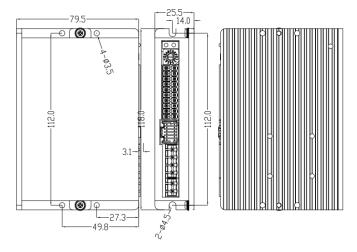


Figure 2.1(A) installation method of drive ELD2-CAN7005B /ELD2-CAN7010B

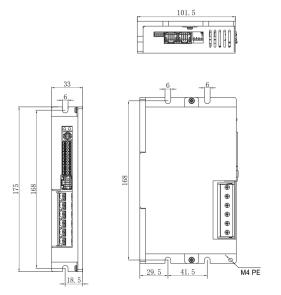


Figure 2.1(B) installation method of drive ELD2-CAN7015B/ELD2-CAN7020B/ELD2-CAN7030B

2.2.2 Installation Space

Reserve enough surrounding space for effective cooling.

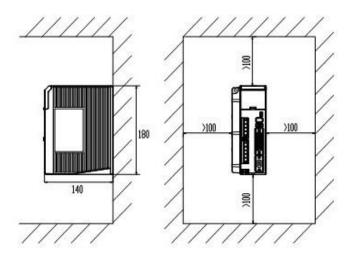


Figure 2.2 Installation Space for Single Drive

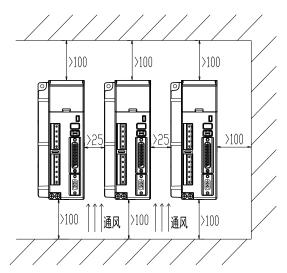


Figure 2.3 Installation Space for several Drives

2.3 Servo Motor Installation

- Don't hold the product by the cable, motor shaft or encoder while transporting it.
- No knocking motor shaft or encoders, prevent motor by vibration or shock.
- The motor shaft can't bear the load beyond the limits.
- Motor shaft does not bear the axial load, radial load, otherwise you may damage the motor.
- Use a flexible with high stiffness designed exclusively for servo application in order to make a radial thrust caused by micro misalignment smaller than the permissible value.
- Install must be steady, prevent drop from vibrating.

Chapter 3 Wiring

- The workers of participation in wiring or checking must possess sufficient ability do this job.
- The wiring and check must be going with power off after five minutes.

- Ground the earth terminal of the motor and drive without fail.
- The wiring should be connected after servo drive and servo motor installed correctly

3.1 Wiring

3.1.1 Wire Gauge

(1)Power supply terminal TB

• Wiring Diameter:

Drive	Wiring diameter (mm²/AWG)		AWG)
Drive	Vdc, GND	U.V.W	PE
ELD2-CAN7005B	AWG18	AWG18	AWG18
ELD2-CAN7010B	AWG16	AWG16	AWG16
ELD2-CAN7015B	AWG16	AWG16	AWG16
ELD2-CAN7020B	AWG14	AWG14	AWG14
ELD2-CAN7030B	AWG12	AWG12	AWG12

- \bullet Grounding: The grounding wire should be as thick as possible, drive servo motor the PE terminal point ground, ground resistance <100 Ω .
- •Use noise filter to remove external noise from the power lines and reduce an effect of the noise generated by the servo drive.
 - Install fuse (NFB) promptly to cut off the external power supply if drive error occurs.

(2) The control signal CN1 and feedback signal CN2

- Diameter: shielded cable (twisting shield cable is better), the diameter ≥ 0.14 mm² (AWG24-26), the shield should be connected to FG terminal.
- Length of line: cable length should be as short as possible and control CN1 cable is no more than 3 meters, the CN2 cable length of the feedback signal is no more than 10 meters.
 - Wiring: be away from the wiring of power line, to prevent interference input.
- •Install a surge absorbing element for the relevant inductive element (coil), DC coil should be in parallel connection with freewheeling diode reversely; AC coil should be in parallel connection with RC snubber circuit.

(3) Regenerative resister

When the torque of the motor is opposite to the direction of rotation (common scenarios such as deceleration, vertical axis descent, etc.), energy will feedback from the load to the drive. At this time, the energy feedback is first received by the capacitor in the drive, which makes the voltage of the capacitor rise. When it rises to a certain voltage value, the excess energy needs to be consumed by the regenerative resistance

The recommended regenerative resistance specifications for the ELD2 series are as follows:

Drive	Recommend resister value (Ω)	Recommend resister power (W)
ELD2-CAN7005B	10	30
ELD2-CAN7010B	10	50
ELD2-CAN7015B	10	50
ELD2-CAN7020B	10	100
ELD2-CAN7030B	10	100 or 150

Method for select regenerative resistance specification

- Firstly, use the built-in resistance of the drive to run for a long time to see if it can meet the requirements: ensure that the drive temperature d33<60°C, the braking circuit does not alarm (Regeneration load factor d14<80), and the drive does not report overvoltage error
- If the drive temperature is high, try to reduce the regenerative energy power, or external resistance of the same specification (in this case, cancel the built-in resistance).
- If the brake resistance burns out, try to reduce the regenerative energy power, or put an external resistance of the same specification or even more power (in this case, cancel the built-in resistance).
- If d14 is too large or accumulates too fast, it means that the regenerative energy is too large, and the built-in resistance cannot consume the generated energy, the regenerative energy power will be reduced, or the external resistance with higher resistance value or power will be reduced.
- If an overvoltage error is reported by the drive, the regenerative energy power is reduced, or a resistance with a smaller external resistance, or a parallel resistance.

The recommended regenerative resistance specifications for the ELD2 series are as follows:

 $10\Omega\pm5\%$, 100W RXFB-1, **Part num Code : 10100469** $5\Omega\pm5\%$, 200W RXLG, **Part num Code : 10100522**

- Match the colors of the motor lead wires to those of the corresponding motor output terminals (U.V.W)
- Never start nor stop the servo motor with this magnetic contactor.

3.1.2 *Wiring*

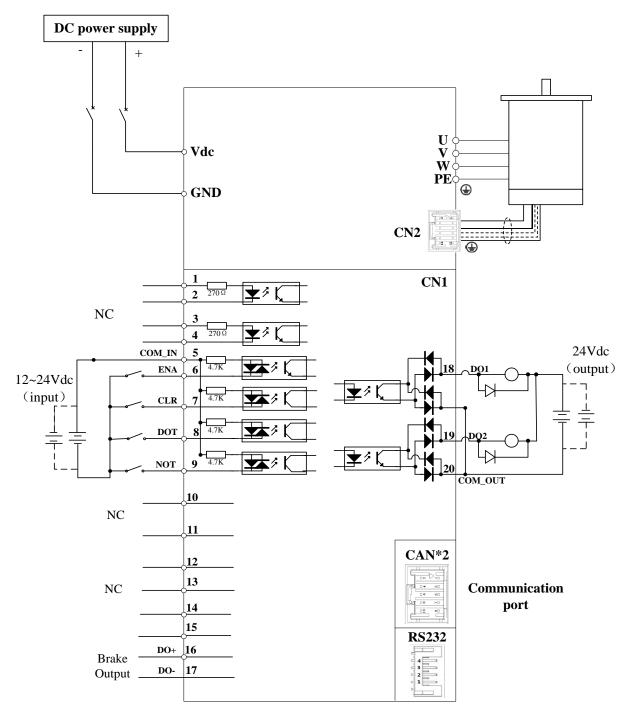


Figure 3.1 Position Control Mode Wiring

Notes:

- 1. Only support 5V pulse and direction signal, $2K\Omega$ resistor must installed with 24V pulse and direction signal.
- 2. 4 digital inputs DI3~DI6, support NPN and PNP connection, recommend 12~24V input signal.
- 3. 2 digital outputs DO1~DO2, support NPN and PNP connection, recommend 24V output signal.
- 4. Brake output(Pin16 and Pin17) is available for : ELD2-CAN7005B /ELD2-CAN7010B /ELD2-CAN7015B/ ELD2-CAN7020B/ ELD2-CAN7030B.

3.2 Drive Terminals Function

Port	Function
CN1	Control Signal Port
CN2	Encoder Input Port
CN3	Power Port
CN4	Regenerative resistor Port
CN5	RS232 Communication Port
CN6	CAN Communication Port
S1	CAN slave axis ID
SW1~4	CAN Baud rate \ Terminal resistance

3.2.1 Control Signal Port-CN1 Terminal

Table 3.1 Signal Explanation of Control Signal Port-CN1

CN1		Pin	Signal	Ю	Detail
		1	NC	Input	Reserved
		2	NC	Input	Reserved
		3	NC	Input	Reserved
		4	NC	Input	Reserved
		5	COMI	Input	Power supply positive terminal of the external input control signal, 12V ~ 24V
	2 1 ×	6	DI3	Input	Digital input signal 3, default value is E-STOP signal, low level available in default , max voltage is 24V input 20KHz
		Digital input signal 4, default value is homing switch signal(HOME-SWITCH), low level available in default, max voltage			
CN1		8	DI5	Input	Digital input signal 5, default value is Positive limit switch signal(POT), low level available in default, max voltage is 24V input 20KHz
	20 19 a	9	DI6	Input	Digital input signal 6, default value is Negative limit switch signal (NOT), low level available in default , max voltage is 24V input 20KHz
		10	NC	Input	Reserved
		11	NC	Input	Reserved
		12	A +	Output	Differential output terminal of motor encoder A phase
		13	A-	Output	2 motor characterisma of motor effected it phase
		14	B+	Output	Differential output terminal of motor encoder B phase
		15	B-	Output	2 merodian carput terminar of motor encoder B phase

	16	DO+	Output	Brake-OFF output only, can not programed for other function.
		DO-	Output	The current of this digital output is enough to release motor brake.
	18	DO1	Output	Digital output signal 1 , default value is alarm output , 24V, <100mA
	19	DO2	Output	Digital output signal 2 , default value is servo-ready output , 24V, $<\!100\text{mA}$
	20	СОМО	Output	Digital output signal commonality ground, 24V

3.2.2 Encoder Input Port-CN2 Terminal

Table 3.2 Encoder Input Port-CN2 Terminal Signal for ELD2-RS series

CN2		Pin	Signal	Ю	Detail
		1	SHIELD	Input	Ground terminal for shielded
		2	HU	Input	Hall sensor U input
		3	HW	Input	Hall sensor W input
		4	HV	Input	Hall sensor V input
		5	VCC	Input	57/6
E		6	GND	Input	+5V for encoder power supply
Encoder		7	EZ+/D+	Input	Encoder channel Z+ input / Serial encoder+
	111	8	EZ-/D-	Input	Encoder channel Z- input / Serial encoder-
		9	EB+	Input	Encoder channel B+ input
		10	EB-	Input	Encoder channel B- input
		11	EA+	PE	Encoder channel A+ input
		12	EA-	Input	Encoder channel A- input

3.2.3 Power Port

CN3		Pin	Signal	Detail
		1	VCC	Down for Drive 24 70vde
	1 2 3 4 5 6	2	GND	Power for Drive , 24-70vdc
Power		3	W	
terminal		4	V	Denough a maken
		5	U	Power for motor
		6	PE	

3.2.4 Regenerative resistor Port

CN4		Pin	Signal	Detail
Regenerative	2 1	1	RBR+	Regenerative resistor +
resistor		2	RBR-	Regenerative resistor -

The recommend resistor for most application is $10\Omega + /-5\%$, 100watt Leadshine can provide resistor: **RXFB-1**, **Part num Code : 10100469**

3.2.5 Communication Port

CN5		Pin	Signal
		1	5V
DC222	3 2 2 1	2	TX
RS232		3	GND
		4	RX

3.2.6 CAN bus connector

CN6		Pin	Signal	Detail
		1	CANH	CANH
CAN	10 8 6 4 2	3	CANL	CANL
IN	8 7 5 3	5	GND	GND
		other	NC	
CN6		Pin	Signal	Detail
		1	CANH	CANH
CAN	10 8 6 4 2	3	CANH CANL	CANH CANL
CAN OUT	10 8 6 4 2 9 7 5 3 1	1 3 5		

3.2.7 CAN Node-ID and Baud rate switch

S1		NO	CAN Node-ID	NO	CAN Node-ID
		0	Pr0.23 Default =16	8	8
	23450	1	1	9	9
S1	* * * * * * * * * * * * * * * * * * *	2	2	A	10
		3	3	В	11
		4	4	C	12
		5	5	D	13

6	6	E	14
7	7	F	15

If switch S1=0, then Pr0.23 valid.

If switch S1=1~F, S1 switch valid in higher priority than Pr0.23

CAN Baud rate	SW1	SW2
Pr0.24	off	off
Default =1MHz	OII	OH
500 KHz	on	off
250 KHz	off	on
125 KHz	on	on

If SW1 and SW2 OFF, then Pr0.24 valid

If SW1 or SW2 ON, then these switch valid in higher priority than Pr0.24

SW3: CAN terminal resistance

SW3=off, disconnect the terminal resistance

SW3=on, connect the terminal resistance

SW4: CAN Node-ID selection (High Bit)

SW4=off, High Bit =0, CAN Node-ID=S1

SW4=on, High Bit =1, CAN Node-ID =16+S1

3.3 I/O Interface Principle

3.3.1 Digital Input Interface

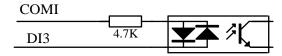


Figure 3-2 Digital Input Interface

- (1) The user provide power supply, DC 12-24V, current≥100mA
- (2) **Notice:** if current polar connect reversely, servo drive doesn't run.

3.3.2 Digital Output Interface

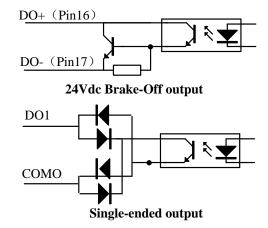


Figure 3-3 Switch Output Interface

- (1) 2 digital single-ended outputs DO1~DO2, support NPN and PNP connection, recommend 24V output signal.
- (2) If the load is inductive loads relays, etc., there must be anti-parallel freewheeling diode across the load. If the freewheeling diode is connected reversely, the servo drive is damaged.

Digital Input function allocation

D 4 00	Name Input selection DI3			Mode							F	
Pr4.02	Range	0~00FFFFFFh Unit —		_	Default	0x14		Index			2402	h
D 4.00	Name	Input selection DI4			Mode							F
Pr4.03	Range	0~00FFFFFFh Unit —		_	Default	0x16		Index		2403	h	
D 404	Name	Input selection DI5			Mode							F
Pr4.04	Range	0~00FFFFFFh	Unit		Default	0x01 Index		K		2404	h	
D 40	Name	Input selection D	I 6		Mode							F
Pr4.05	Range	0~00FFFFFFh Unit —			Default	0x02	2	Inde	X		2405	h

Assign functions to digital inputs.

This parameter use 16 binary system to set up the values,

For the function number, please refer to the following table.

		Setup		
Signal	Symbol	Normally	Normally	0x60FD(bit)
		open	closed	
Invalid	_	00h	Do not setup	×
Positive direction over-travel inhibition input	POT	01h	81h	1
Negative direction over-travel inhibition input	NOT	02h	82h	0
Alarm clear input	A-CLR	04h	Do not setup	
Forced alarm input	E-STOP	14h	94h	
HOME-SWITCH	HOME-SWITCH	16h	96h	2

- Normally open means input signal comes from external controller or component, for example: PLC.
- Normally closed means input signal comes from drive internally.
- Don't setup to a value other than that specified in the table.
- Don't assign specific function to 2 or more signals. Duplicated assignment will cause Err210 I/F input multiple assignment error 1 or Err211 I/F input multiple assignment error 2.
- E-STOP: Associated parameter Pr4.43

I/O input digital filtering

	Name	I/O reading filter			Mode					F
Pr5.15 *	Range	0~255	Unit	0.1ms	Default	0	Inde	X	2515	h
	I/O input dig	ital filtering; highe	r setup w	ill arise o	control delay.					

Digital Output function allocation

D 440	Name	Output selection	DO1	Mode					F
Pr4.10	Range	0~00FFFFFFh	Unit	Default	0x01	Inde	X	2410h	I
D 444	Name	Output selection	DO2	Mode					F
Pr4.11	Range	0~00FFFFFFh	Unit	Default	0x02	Inde	X	2411h	l

Assign functions to digital outputs.

For the function number, please refer to the following table.

S'1	Ch al	Setup value				
Signal name	Symbol	Normally open	Normally closed			
Master control output	_	00h	Do not setup			
Alarm output	Alm	81h	01h			
Servo-Ready output	S-RDY	02h	82h			
Eternal brake release signal	BRK-OFF	03h	83h			
Positioning complete output	INP	04h	84h			
At-speed output	AT-SPPED	05h	85h			
Torque limit signal output	TLC	06h	86h			
Zero speed clamp detection output	ZSP	07h	87h			
Velocity coincidence output	V-COIN	08h	88h			
Positional command ON/OFF output	P-CMD	0Bh	8Bh			
Speed limit signal output	V-LIMIT	0Dh	8Dh			
Speed command ON/OFF output	V-CMD	0Fh	8Fh			
Servo enable state output	SRV-ST	12h	92h			
Homing process finish	HOME-OK	22h	A2h			

- Normally open: Active low
- Normally closed: Active high
- Don't setup to a value other than that specified in the table.
- Pr4.10~Pr4.11 correspond to DO1~DO2 respectively.

Chapter 4 Parameter

4.1 Parameter List

4.1.1 Drive Parameters (Group 2000h)

					Parameter N	lumber		CANopen	
		Mod	le		Classify	Num	Name	Address	Parameters
				F		00	MFC function	2000h	Pr_000
				\mathbf{F}		01	control mode setup	2001h	Pr_001
				\mathbf{F}		02	real-time auto-gain tuning	2002h	Pr_002
							selection of machine		
				F		03	stiffness at real-time	2003h	Pr_003
							auto-gain tuning		
				F		04	Inertia ratio	2004h	Pr_004
						06	Rotation direction setup	2006h	Pr_006
PP	PV		HM			08	Command pulse per one motor revolution	2008h	Pr_008
				\mathbf{F}	[Class 0]	13	1st torque limit	2013h	Pr_023
PP			нм		Basic	14	position deviation excess setup	2014h	Pr_014
					setting	15	Absolute encoder setup	2015h	Pr_015
				F		16	External regenerative resistance value	2016h	Pr_016
				F		17	External regenerative resistance power value	2017h	Pr_017
				F		23	CAN Node ID	2023h	Pr_023
				\mathbf{F}		24	CAN baud rate	2024h	Pr_024
						25	Synchronous compensation time 1	2025h	Pr_025
						26	Synchronous compensation time 2	2026h	Pr_026
PP			HM			00	1st gain of position loop	2100h	Pr_100
				F		01	1st gain of velocity loop	2101h	Pr_101
				F		02	1st time constant of velocity loop integration	2102h	Pr_102
				F		03	1st filter of velocity detection	2103h	Pr_103
				F		04	1st time constant of torque filter	2104h	Pr_104
PP			HM		[C] 43	05	2nd gain of position loop	2105h	Pr_105
				F	[Class 1] Gain	06	2nd gain of velocity loop	2106h	Pr_106
				F	Adjust	07	2nd time constant of velocity loop integration	2107h	Pr_107
				F		08	2nd filter of velocity detection	2108h	Pr_108
				F		09	2nd time constant of torque filter	2109h	Pr_109
PP			HM				Velocity feed forward gain	2110h	Pr_110
PP			НМ			11	Velocity feed forward filter	2111h	Pr_111
PP	PV		НМ			12	Torque feed forward gain	2112h	Pr_112

			. ,		Parameter N	Number	V	CANopen	.
		IV.	Iode		Classify	Num	Name	Address	Parameters
PP	PV		HM			13	Torque feed forward filter	2113h	Pr_113
				F		15	Control switching mode	2115h	Pr_115
				F		17	Control switching level	2117h	Pr_117
				F		18	Control switch hysteresis	2118h	Pr_118
				F		19	Gain switching time	2119h	Pr_119
				F		37	Special register	2137h	Pr_137
						00	adaptive filter mode setup	2200h	Pr_200
				F		01	1st notch frequency	2201h	Pr_201
				F		02	1st notch width selection	2202h	Pr_202
				F		03	1st notch depth selection	2203h	Pr_203
				F		04	2nd notch frequency	2204h	Pr_204
				F	[Class 2]	05	2nd notch width selection	2205h	Pr_205
				\mathbf{F}	Vibration	06	2nd notch depth selection	2206h	Pr_206
				\mathbf{F}	Restrain	07	3rd notch frequency	2207h	Pr_207
					Function	14	1st damping frequency	2214h	Pr_214
						15	1st damping filter setup	2215h	Pr_215
-			****				Positional command	22221	D 222
PP			HM			22	smooth filter	2222h	Pr_222
					1		Positional command FIR	22221	D 222
PP			HM			23	filter	2223h	Pr_223
	PV					12	time setup acceleration	2312h	Pr_312
	PV				1	13	time setup deceleration	2313h	Pr_313
					[Class 3]		Sigmoid acceleration/	221.11	
	PV				Speed,	14	deceleration time setup	2314h	Pr_314
	PV				Torque Control	16	Speed zero-clamp level	2316h	Pr_316
					Control		Speed mode zero speed	22221	
						23	static	2323h	Pr_323
				F		00	input selection DI1	2400h	Pr_400
				F		01	input selection DI2	2401h	Pr_401
				F		02	input selection DI3	2402h	Pr_402
				F		03	input selection DI4	2403h	Pr_403
				F		04	input selection DI5	2404h	Pr_404
				F		05	input selection DI6	2405h	Pr_405
				F		10	output selection DO1	2410h	Pr_410
				F		11	output selection DO2	2411h	Pr_411
TOTO		1	TTD				Positioning complete		
PP		1	HM		[Class 4]	31	range	2431h	Pr_431
DD			TIDA		I/F	22	Positioning complete	0.4001	D 400
PP			HM		Monitor	32	output setup	2432h	Pr_432
PP			HM			33	INP hold time	2433h	Pr_433
				F	Setting	34	Zero-speed	2434h	Pr_434
	PV				1	35	Speed coincidence range	2435h	Pr_435
	PV				1	36	At-speed	2436h	Pr_436
					1		Mechanical brake action		
		1		F		37	setting when stopping	2437h	Pr_437
						26	Mechanical brake action	0.4007	P. 400
				F		38	setting	2438h	Pr_438
	1	1		F		39 Bra	Brake release speed setup	2439h	Pr_439
				F			E-stop function active	2443h	Pr_443
				F		04	Drive inhibit input setup	2504h	Pr_504
		+	1				Sequence at servo-off		
				F		06	Sequence at servo-on	2506h	Pr_506

					Parameter N	Number		CANopen	
	Mo	ode			Classify	Num	Name	Address	Parameters
				F		08	Main power off LV trip selection	2508h	Pr_508
				F	[Class 5]	09	Main power off detection time	2509h	Pr_509
					Extended	10	Dynamic braking mode	2510h	Pr_510
					Setup	11	Torque setup for emergency stop	2511h	Pr_511
				F		12	Over-load level setup	2512h	Pr_512
				F		13	Over-speed level setup	2513h	Pr_513
PP		HM				20 Position setup unit select		2520h	Pr_520
				F		21 Selection of torque limit		2521h	Pr_521
				F		22 2nd torque limit		2522h	Pr_522
						33	Touch probe 1 signal compensation time	2533h	Pr_533
						34	Touch probe 2 signal compensation time	2534h	Pr_534
						37	Torque saturation alarm detection time	2537h	Pr_537
						39	3rd torque limit	2539h	Pr_539
						01	Encoder zero position compensation	2601h	Pr_601
PP		НМ				04	JOG trial run command speed	2604h	Pr_604
PP		НМ				05	Position 3rd gain valid time	2605h	Pr_605
PP		НМ				06	Position 3rd gain scale factor	2606h	Pr_606
				F		07	Torque command additional value	2607h	Pr_607
				F		08	Positive direction torque compensation value	2608h	Pr_608
				F		09	Negative direction torque compensation value	2609h	Pr_609
					[Class 6]	11	Current response setup	2611h	Pr_611
					Special Setup	12	Setting of torque limit for zero correction of encoder.	2612h	Pr_612
				F	-	13	2nd inertia ratio	2613h	Pr_613
				F		14	Emergency stop time at alarm	2614h	Pr_614
						20	distance of trial running	2620h	Pr_620
						21	waiting time of trial running	2621h	Pr_621
						cycling times of trial running		2622h	Pr_622
						25	Acceleration of trial running	2625h	Pr_625
						26	Mode of trial running	2626h	Pr_626
						34	Frame error window time	2634h	Pr_634
						35	Frame error window	2635h	Pr_635

	M	o do			Parameter N	lumber	Name	CANopen	Parameters
Mode				Classify	Num	Name	Address	Parameters	
						61	Z signal duration time	2661h	Pr_661
						62	Overload warning threshold	2662h	Pr_662
			63	upper limit of multi - turn absolute position	2663h	Pr_663			

4.1.2 Manufacturer Parameters (Group 5000h)

Index	Sub- index	Name	Unit	Default	Min	Max	Details
	01	RPDO length		8	0	64	
	02	TPDO length		17	0	64	
	03	The number of RPDO		1	0	4	
	04	The number of TPDO		1	0	2	
	05	Sync0 Watchdog counter		0	0	65535	83Bh Alarm detection
	06	Reserved			0	65535	
	07	Sync0 Watchdog limit		4	0	65535	
	08	Sync0 Drift watchdog counter		0	0	65535	83Ch Alarm detection
5004	09	Sync0 Drift watchdog limit		4	0	65535	
	0A	SM2 watchdog counter		0	0	65535	83Ah Alarm detection
	0B	SM2 Watchdog limit		4	0	65535	
	0C	Application layer SM2/Sync0 watchdog counter		0			
	0D	Application layer SM2/Sync0 watchdog limit		4			
	0E	Reserved			0	500	
	0F	Time interval between SM2 and Sync0	ns	0	0	100000 0000	832h Alarm detection
5006	00	Synchronous alarm setting		0xFFF F	0	0xFFF F	Bit0: 818h Alarm enable switch Bit1: 819h Bit2: 81Ah Bit3: 824h Bit4: 825h Bit5: Reserved Bit6: Reserved Bit7: 82Ch Bit8: 82Dh Bit9: 832h Bit10~15: Reserved Notes: 0 invalid; 1 valid

					1	1		I o ·	1. 1		
									nvalid; valid;		
5010	00	PDO watchdog	me	0	0	60	000		vanu; : ms;		
3010	00	overtime	ms	U	U	00	000			timeout alarm	
										neout alarm 819h	
					Bit0: A	bnorn	nal si			neout uturiii 01711	
						invali		1: val			
					Bit1: p	ull ba			wel while f	final stop	
						invali		1: val		•	
					Bit2/Bit	3:					
					Bit2	Bit3	Posi	tive	Negativ	Feedback after	
							limit	:	e limit	the homing process	
							posi		position		
					0	0		D-02+	607D-0	6064 = 607C	
5012	04	Homing setting	-	5			6070	C	1 +		
									607C		
					0	1		D-02-	607D-0	6064 = -607C	
							6070		1 - 607C	5054 0	
					1	-	607I)- 02	607D-0	6064 = 0	
					Dit4: Do	01 11/16	h Ow	ortrono	l between t	he high speed and	
					low spee					ne mgn speed and	
										1h bit13=1);	
									homing p		
		Set synchronization					,				
	01	cycle minimum	us	250	125	10	000				
5400		value									
3400		Set synchronization									
	02	cycle maximum	us	10000	4000	20	000				
		value									
	01	Absolute encoder	r	-	-		-	-			
		multi turn number									
	02	Encoder single turn position	Pulse	-	-		-	-			
		Encoder feedback			_			_			
	03	position 32 bit low	Pulse	-	_		_	_			
		Encoder feedback			_			_			
	04	position 32 bit high	Pulse	-							
5500		The actual			-		_	-			
	05	mechanical position	Unit	-							
		32 bit low									
		The actual			-		-	-			
	06	mechanical position	Unit	-							
		32 bit high			-	-					
	07	Number of encoder communication			_		-	-			
	0/	exceptions		_							
	01	Motor Speed	r/min	_	_			_			
	01	Speed of position	1/111111	-							
	02	command	r/min	-	-		-	-			
	03	Speed command	r/min	_	_	-	_	_			
5501		-			_		- -	_			
	04	Actual torque	0.1%	-		-					
	05	Torque command	0.1%	=	-		-	-			
	06	Relative position	Pulse	-	-		-	-			
		error									

	07	Internal position command	Pulse	-	-	-	-
	08	Overload ratio	0.1%	1	-	-	-
	09	Discharge load rate	0.1%	1	-	-	-
	0A	Inertia ratio	%	1	-	-	-
	0B	Actual positive torque limit value	0.1%	1	-	-	-
	0C	Actual negative torque limit value	0.1%	1	-	-	-
	0D	U phase current detect value	0.1%	ı	-	-	-
	0E	W phase current detect value	0.1%	1	-	-	-
	01	SI input signal	-	1	-	-	-
	02	DO output signal	-	ı	-	-	-
	03	Reserved	-	ı	-	-	-
5502	04	Reserved	-	ı	-	-	-
	05	Bus voltage	V	1	_	-	-
	06	Temperature	$^{\circ}$	1	-	-	-
	07	Power on time	S	-	-	-	-

4.1.3 Device Profile Parameters (Group 6000h)

Index	Sub- index	Name	Unit	Default	Min	Max	Mode
603F	0	Error code	-	-	-	-	ALL
6040	0	Control word	-	-	-	-	ALL
6041	0	Status word	-	-	-	-	ALL
605A	0	Quick stop option code	-	6	0	7	ALL
605B	0	Shut down code	-	0	0	1	ALL
605C	0	Disable operation code	-	0	0	1	ALL
605D	0	Halt option code	-	1	1	4	ALL
605E	0	Alarm stop code	-	0	0	2	ALL
6060	0	Mode of operation	-	8	1	11	ALL
6061	0	Mode of operation display	-	-	-	-	ALL
6062	0	Position demand value	Command unit	-	-	-	pp/hm
6063	0	Actual internal position value	Encoder unit	-	-	-	ALL
6064	0	Actual feedback position value	Command unit	-	-	-	ALL
6065	0	Follow error window	Command unit	10000	0	2147483 647	pp
6066	0	Follow error detection time	ms	10	0	65535	pp
606B	0	Internal command speed	Command unit	-	-	-	pv
606C	0	Actual feedback speed value	Command unit	-	-	-	ALL

6071	0	Target torque	0.1%	0	-32768	32767	pt
6072	0	Max torque	0.1%	3000	0	65535	ALL
6073	0	Max current	0.1%	-	-	-	ALL
6074	0	Internal torque command	0.1%	_	_	_	ALL
6075	0	Rated current	mA	_		_	ALL
6076	0	Rated torque	mN.M	_	_	_	ALL
6077	0	Actual torque	0.1%	_			ALL
6079	0	Bus voltage	mV	_	-	-	ALL
			Command		-214748	2147483	ALL
607A	0	Target position	unit	0	3648	647	pp
607C	0	Homing position offset	Command unit	0	-214748 3648	2147483 647	ALL
607D	1	Minimum soft limit	Command unit	0	-214748 3648	2147483 647	pp
007D	2	Maximum soft limit	Command unit	0	-214748 3648	2147483 647	pp
607E	0	Motor rotation direction	-	0	0	255	ALL
607F	0	Maximum protocol speed (Restricted by 6080)	Command unit /s				
6080	0	Maximum motor speed	r/min	5000	0	6000	ALL
6081	0	protocol speed (Restricted by 607F)	Command unit /s	10000	0	2147483 647	pp
6083	0	Profile acceleration	Command unit /s/s	10000	1	2147483 647	pp/pv/
6084	0	Profile deceleration	Command unit /s/s	10000	1	2147483 647	pp/pv
6085	0	Quick stop deceleration	Command unit /s/s	100000 00	1	2147483 647	pp/pv/ hm
6087	0	Torque change rate	0.1%/s	100	1	2147483 647	pt
608F	1	Encoder resolution	Encoder unit	-	-	-	ALL
	2	Motor turns	-				
1001	1	Electron gear molecule	-	1	1	2147483 647	ALL
6091	2	Electronic gear denominator	-	1	1	2147483 647	ALL
6092	1	Number of pulses per rotation	Command unit	10000	1	2147483 647	ALL
	2	Number of physical axis turns	-				
6098	0	Homing method	-	19	-6	37	hm
6099	1	High speed of homing	Command unit /s	10000	0	2147483 647	hm
5077	2	Low speed of homing	Command unit /s	5000	0	2147483 647	hm
609A	0	Homing acceleration	Command unit /s ²	10000	0	2147483 647	hm
60B0	0	Position feedforward	Command unit	0	-214748 3648	2147483 647	
60B1	0	Velocity feedforward(Restricted by 6080)	Command unit /s	0	-214748 3648	2147483 647	pp/pv/ hm
60B2	0	Torque feedforward	0.1%	0	-32768	32767	ALL

60B8	0	Touch probe control word	-	0	0	65535	ALL
60B9	0	Touch probe statue word	-	-	-	-	ALL
60BA	0	Touch probe 1 rising edge capture position	Command unit	-	-	-	ALL
60BB	0	Touch probe 1 falling edge capture position	Command unit	-	1	-	ALL
60BC	0	Touch probe 2 rising edge capture position	Command unit	-	1	-	ALL
60BD	0	Touch probe 2 falling edge capture position	Command unit	-	-	-	ALL
60C5	0	Protocol maximum acceleration	Command unit /s/s	100000 000	1	2147483 647	ALL
60C6	0	Protocol maximum deceleration	Command unit /s/s	100000 000	1	2147483 647	ALL
60D5	0	Touch probe 1 rising edge counter	-	-	-	-	ALL
60D6	0	Touch probe 1 falling edge counter	-	-	-	-	ALL
60D7	0	Touch probe 2 rising edge counter	-	-	-	-	ALL
60D8	0	Touch probe 2 falling edge counter	-	-	-	-	ALL
60E0	0	Positive torque limit	0.1%	3000	0	65535	ALL
60E1	0	Negative torque limit	0.1%	3000	0	65535	ALL
60F4	0	Actual following error	Command unit	-	-	-	pp/hm
60FA	0	Speed of position loop	Command unit /s	-	-	-	csp/pp/ hm
60FC	0	Internal command position	Encoder unit	-	-	-	pp/hm
60FD	0	Status of input	-	-	-	-	ALL
60FE	1	Output valid	-	-	1	-	ALL
OULE	2	Output enable	-	-	-	-	ALL
60FF	0	Target speed (Restricted by 6080)	Command unit /s	0	-214748 3648	2147483 647	pv
6502	0	Supported operation mode	-	-	-	-	ALL

4.2 Parameters Function

Here is the explanation of parameters, you can check them or modify the value using configuration software or the front panel of drive.

 ${\it Contact}~\underline{tech@leadshine.com}~if~you~need~more~technical~service~.$

4.2.1 [Class 0] Basic Setting

Pr0.00	Name	Mode loop ga	in		Mode						F
Pr0.00	Range	0~2000	Unit	0.1Hz	Default	0		Index		2000h	
	Set up the band	width of MFC,	it is sim	ilar to the	response bandwid	th					
	Setup value										
	0	Disable the fu	ınction.								
	1	Enable the fu	Enable the function, set the bandwidth automatically,								
	1	recommended for most application.									
	2-10	Forbidden and reserved.									

11-20000 Set the bandwidth manually, 1.1Hz – 2000Hz

MFC is used to enhance the performance of dynamic tracing for input command, make positioning faster, cut down the tracking error, run more smooth and steady. It is very useful for multi-axis synchronous movement and interpolation, the performance will be better.

The main way to use this function:

a. Choose the right control mode: Pr0.01 = 0

b. Set up the inertia of ratio: Pr0.04

c. Set up the rigidity: Pr0.03

d. Set up the Pr0.00:

- 1) If no multi-axis synchronous movement, set Pr0.00 as 1 or more than 10;
- 2) If multi-axis synchronous movement needed , set Pr0.00 as the same for all the axes .
- 3) If Pr0.00 is more than 10, start with 100, or 150, 200, 250,

Caution:

- 1. Set up the right control mode, the right inertia of ratio and rigidity firstly.
- 2. Don't change the value of Pr0.00 when the motor is running, otherwise vibration occurs

 Set up a small value from the beginning if using it in manual mode, smaller value means running more
 smooth and steady, while bigger one means faster positioning

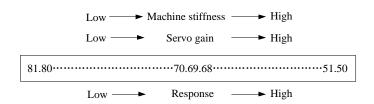
Pr0.01	Name	Control Mode	Setup		Mode					F
Pro.01	Range	0~9	Unit		Default	9	Index	1	2001h	
ı	Set using contro	ol mode:								
	Setup value	Content		Details						
	8	CANopen		PP/PV/PT/HM						
			1		-					

Pr0.02	Name	Real-time Aut	o-gain Tu	ning	Mode					F
F10.02	Range	0~2	Unit	_	Default	0	Index		2002h	

You can set up the action mode of the real-time auto-gain tuning.

Setup value	Mode	Varying degree of load inertia in motion
0	invalid	Real-time auto-gain tuning function is disabled.
1	standard	Basic mode. do not use unbalanced load, friction compensation or gain switching. It is usually for interpolation movement.
2	positioning	Main application is positioning. it is recommended to use this mode on equipment without unbalanced horizontal axis, ball screw driving equipment with low friction, etc. it is usually for point-to point movement.

 $\textbf{Caution:} \ If \ Pr0.02=1 \ or \ 2 \ , \ you \ can't \ modify \ the \ values \ of \ Pr1.01-Pr1.13, \ the \ values \ of \ them \ depend \ on \ the \ real-time \ auto-gain \ tuning \ , all \ of \ them \ are \ set \ by \ the \ drive \ itself.$


For **Standard** mode (Pr0.02=1), it is usually for interpolation movement. It is unavailable to modify the value of Pr1.00-1.14, just need to change the value of Pr0.03, then all values of Pr1.00-1.14 will be changed accordingly.

For **Positioning** mode (Pr0.02=2), it is usually for point to point movement. It is unavailable to modify the value of Pr1.00-1.14, just change the value of Pr0.03, then all values of Pr1.00-1.14 will be changed

Pr0.03	Name	Selection of m		 Mode					F
	Range	50 ~ 81	Unit	Default	70	Index		2003h	

You an set up response while the real-time auto-gain tuning is valid.

Notice: Lower the setup value, higher the velocity response and servo stiffness will be obtained. However, when decreasing the value, check the resulting operation to avoid oscillation or vibration.

Control gain is updated while the motor is stopped. If the motor can't be stopped due to excessively low gain or continuous application of one-way direction command ,any change made to Pr0.03 is not used for update. If the changed stiffness setting is made valid after the motor stopped, abnormal sound or oscillation will be generated. To prevent this problem, stop the motor after changing the stiffness setting and check that the changed setting is enabled.

Pr0 04	Name	Inertia ratio			Mode					F
Pru.04	Range	0~10000	Unit	%	Default	250	Ind	ex	2004h	

You can set up the ratio of the load inertia against the rotor(of the motor)inertia.

Pr0.04=(load inertia/rotate inertia)×100%

Notice:

If the inertia ratio is correctly set, the setup unit of Pr1.01 and Pr1.06 becomes (Hz). When the inertia ratio of Pr0.04 is larger than the actual value, the setup unit of the velocity loop gain becomes larger, and when the inertia ratio of Pr0.04 is smaller than the actual value, the setup unit of the velocity loop gain becomes smaller.

D ₁₀ 0.12	Name	1st Torque Lin	mit		Mode					F
PT0.13	Range	0~500	Unit	%	Default	300	Index		2013h	

You can set up the limit value of the motor output torque, as motor rate current %, the value can't exceed the maximum of output current.

Compared with the maximum torque 6072, the actual torque limit value is smaller one.

D-0.14	Name	Position Devi	ation Exce	ss Setup	Mode	PP		HM		
Prv.14	Range	0~500	Unit	0.1rev	Default	200	Ind	ex	2014h	

Set excess range of positional deviation by the command unit(default). Setting the value too small will cause Err180 (position deviation excess detection)

D ₂₀ 0.15	Name	Absolute Enc	oder Setup)	Mode	PP		HM		
FTU.15	Range	0~15	Unit	-	Default	0	Index	ζ	2015h	

0: Incremental position mode:

The encoder is used as a incremental encoder, and the position retentive at power failure is not supported.

1: Absolute position linear mode:

The encoder is used as an absolute encoder, and the position retentive at power failure is supported.. It is applicable to the scenario where the travel range of device load is fixed and the encoder multi-turn data dose not overflow.

2: Absolute position rotation mode:

The encoder is used as an absolute encoder, and the position retentive at power failure is supported. It is mainly applicable to the scenario where the load travel range is not limited and the number of motor single-direction revolution is less than $0\sim(Pr6.63+1)$

5: Clean multi-turn alarm, and open multi-turn absolute function.

It will become 1 when normal clearance, if it's still 5 after 3 seconds, please deal with according to 153 alarm processing.

9: Clear multi-turn position and reset multi-turn alarm, open multi-turn absolute function.

It will become 1 when normal clearance, if it's still 9 after 3seconds, please deal with according to 153 alarm processing. Please remember to do mechanical homing.

Notes: Set to 9 after homing process finished and servo disabled, valid after restart power-supply

Pr0.16	Name	External reger	nerative re	sistance	Mode					F
	Range 40~500 Unit Ohm		Default	100	Index		2016h			

Set Pr.0.16 and Pr.0.17 to confirm the threshold value of the discharge loop to give alarm for over current.

Pr0.17	power value	Mode					F			
	Range	20~5000	Unit	W	Default	20	Index		2017h	

Set Pr.0.16 and Pr.0.17 to confirm the threshold value of the discharge loop to give alarm for over current.

Pr0.23 *	Name	CAN Node II)		Mode							F
FTU.23 A	Range	0~32767	Unit	_	Defau	lt	2		Index	2	2023h	
	Setup the Noo	le-ID of the sla	ve station.									
Pr0.24*	Name	CAN Baud ra	te		Mode							F
Pru.24 ^	Range	0~7	Unit	_	Defau	lt	0		Index	2	2024h	
	Pr0.24	CAN baud ra	oto (KHz)	Pr0.	24	CAN ba	and re	oto (K	H ₇)			
	110.24	CAN Daud 12		110.	4	CAN D	10		112)			

Pr0.24	CAN baud rate (KHz)	Pr0.24	CAN baud rate (KHz)
0	1000	4	125
1	800	5	100
2	500	6	50
3	250	7	20

Pr0.25	Name	Synchronous 1	compensat	ion time	Mode					
	Range	1~100	Unit	0.1us	Default	10	Index		2025h	

Synchronous jitter compensation range, used in poor synchronization of the master station.

Note: Valid after restart power.

Pr0.26	Name	Synchronous 2	compensat	ion time	Mode					
	Range	1~2000	Unit	0.1us	Default	50	Index		2026h	

Synchronous jitter compensation range, used in poor synchronization of the master station.

Note: Valid after restart power.

4.2.2 [Class 1] Gain Adjust

D 4 00	Name	1st gain of po	sition loop)	Mode	PP		HM		
Pr1.00	Range	0~30000	Unit	0.1/s	Default	320	Index		2100h	

You can determine the response of the positional control system. Higher the gain of position loop you set, faster the positioning time you can obtain. Note that too high setup may cause oscillation.

D 4 04	Name	1st gain of ve	locity loop	ı	Mode					F
Pr1.01	Range	1~32767	Unit	0.1Hz	Default	180	Index		2101h	

You can determine the response of the velocity loop. In order to increase the response of overall servo system by setting high position loop gain, you need higher setup of this velocity loop gain as well. However, too high setup may cause oscillation.

Pr1.02	Name	1st Time Cons Loop Integrat		locity	Mode					F
111.02	Range	1~10000	Unit	0.1ms	Default	310	Index		2102h	

You can set up the integration time constant of velocity loop, Smaller the setup value, faster you can dog-in deviation at stall to 0.The integration will be maintained by setting to "9999". The integration effect will be lost by setting to "10000".

D 4.00	Name	1st Filter of V	elocity De	tection	Mode					F
Pr1.03	Range	50~81	Unit		Default	70	Index		2103h	

You can set up the time constant of the low pass filter (LPF) after the speed detection, in 32 steps (50 to 81). Higher the setup, larger the time constant you can obtain so that you can decrease the motor noise, however, response becomes slow.

You can set the filter parameters through the loop gain, referring to the following table:

Setup Value	Speed Detection Filter Cut-off Frequency(Hz)	Setup Value	Speed Detection Filter Cut-off Frequency(Hz)
81	2500	65	750
80	2250	64	700
79	2100	63	650
78	2000	62	600
77	1800	61	550
76	1600	60	500
75	1500	59	450
74	1400	58	400

50
00
50
00
75
50
25
00
0 5 2

D 4 04	Name	1st torque filte	er		Mode							F
Pr1.04	Range	0~2500	Unit	0.01ms	Default	126		Index			2104h	
		onstant of the f sonance can be			filter for the inser	tion o	f torq	ue inst	ructio	n. Vib	ration	due

	Name	2nd gain of po	osition loo	p	Mode	PP	HM	
Pr1.05	Range	0~30000	Unit	0.1/s	Default	380	Index	2105h
D 100	Name	2nd gain of vo	elocity loo	p	Mode			F
Pr1.06	Range	1~32767	Unit	0.1Hz	Default	180	Index	2106h
Pr1.07	Name	2nd Time Cor Loop Integrat		elocity	Mode			F
	Range	1~10000	Unit	0.1ms	Default	10000	Index	2107h
D 1 00	Name	2nd Filter of V	Velocity D	etection	Mode			F
Pr1.08	Range	0~31	Unit	_	Default	15	Index	2108h
Pr1.09	Name	2nd Time Cor filter	nstant of to	orque	Mode			F
	Range	0~2500	Unit	0.01ms	Default	126	Index	2109h
	-	, velocity loop, (1st and 2nd).	velocity de	etection fi	lter, torque com	nand filter	have their 2 pa	irs of gain or

Pr1.10	Name	Velocity feed forward gain			Mode	PP		HM			
	Range	0~1000	Unit	0.10%	Default	300	Index		21	10h	

Multiply the velocity control command calculated according to the internal positional command by the ratio of this parameter and add the result to the speed command resulting from the positional control process.

Pr1.11 Name Velo	ocity feed forward filter Mode	PP	HM	
------------------	--------------------------------	----	----	--

Range 0~6400 Unit 0.01ms Default 50 Index 2111h

Set the time constant of 1st delay filter which affects the input of speed feed forward.

(usage example of velocity feed forward)

The velocity feed forward will become effective as the velocity feed forward gain is gradually increased with the speed feed forward filter set at approx.50 (0.5ms). The positional deviation during operation at a constant speed is reduced as shown in the equation below in proportion to the value of velocity feed forward gain.

Position deviation [unit of command]=command speed [unit of command /s]/position loop gain[1/s]×(100-speed feed forward gain[%]/100

	Name	Torque feed for	orward gai	n	Mode	PP	PV		HM			
Pr1.12	Range	0~1000	Unit	0.1%	Default	0		Index		21	12h	

- Multiply the torque control command calculated according to the velocity control command by the ratio of this parameter and add the result to the torque command resulting from the velocity control process.
- To use torque feed forward, correctly set ratio of inertia. Set the inertia ratio that can be calculated from the machine specification to Pr0.04 inertia ratio.
- Positional deviation at a constant acceleration/deceleration can be minimized close to 0 by increasing
 the torque forward gain .this means that positional deviation can be maintained at near 0 over entire
 operation range while driving in trapezoidal speed pattern under ideal condition where disturbance
 torque is not active.

	Name	Torque feed fo	orward filt	er	Mode	PP	PV	HM			
Pr1.13	Range	0~6400	Unit	0.01ms	Default	0		Index	21	13h	

Set up the time constant of 1st delay filter which affects the input of torque feed forward. zero positional deviation is impossible in actual situation because of disturbance torque. as with the velocity feed forward, large torque feed forward filter time constant decreases the operating noise but increases positional deviation at acceleration change point.

Pr1.15	Name	Mode of post	Mode of position control switching									F	
	Range	0~10	Unit	II -	Default	0		Index			2115	h	
	Setup value	Switching condition	G	Gain switching condition									
	0	Fixed to 1st gair	n Fi	Fixed to the 1st gain (Pr1.00-Pr1.04)									
	1	Fixed to 2nd gai	in Fi	xed to the 2	nd gain (Pr1.05-Pr	1.09))						
	2	Reserved											
	3	 Shift to the 2nd gain when the absolute value of command exceeded (level + hysteresis)[%] previously value of gain. Return to the 1st gain when the absolute value of command was kept below (level + hysteresis) [%] previously value of command was kept below (level + hysteresis) [%] previously value of command was kept below (level + hysteresis) [%] previously value of command was kept below (level + hysteresis) [%] previously value of command was kept below (level + hysteresis) [%] 						ously vue of	vith th	e 1st			
	4	Reserved	R	Reserved									
	5	Speed command	el is	Shift to the		e abs	olute	s. ute value of the speed sis)[r/min]previously with the					

Return to the 1st gain when the absolute value of the speed command was kept below (level + hysteresis) [r/min] previously

large

		during delay time with the 2nd gain.
6	Position deviation is large	 Valid for position control. Shift to the 2nd gain when the absolute value of the positional deviation exceeded (level + hysteresis)[pulse] previously with the 1st gain. Return to the 1st gain when the absolute value of the positional deviation was kept below (level + hysteresis)[r/min]previously during delay time with the 2nd gain. Unit of level and hysteresis [pulse] is set as the encoder resolution for positional control.
7	position command exists	 Valid for position control. Shift to the 2nd gain when the positional command was not 0 previously with the 1st gain. Return to the 1st gain when the positional command was kept 0 previously during delay time with the 2nd gain.
8	Not in positioning complete	 Valid for position control. Shift to the 2nd gain when the positioning was not completed previously with the 1st gain. Return to the 1st gain when the positioning was kept in completed condition previously during delay time with the 2nd gain.
9	Actual speed is large	 Valid for position control. Shift to the 2nd gain when the absolute value of the actual speed exceeded (level + hysteresis) (r/min) previously with the 1st gain. Return to the 1st gain when the absolute value of the actual speed was kept below (level - hysteresis) (r/min) previously during delay time with the 2nd gain.
10	Have position command +actual speed	 Valid for position control. Shift to the 2nd gain when the positional command was not 0 previously with the 1st gain. Return to the 1st gain when the positional command was kept at 0 during the delay time and the absolute value of actual speed was kept below (level - hysteresis) (r/min) previously with the 2nd gain.

In position control mode, setup Pr1.15=3,5,6,9,10;

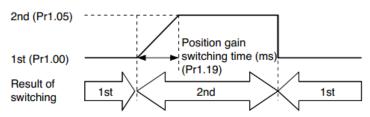
In speed control mode, setup Pr1.15=3,5,9;

Pr1.17	Name	Level of positions switching	tion contro	ol	Mode					F
	Range	0~20000	Mode		Default	50	Index		2117h	
	•	g varies with syndition: position	_		nber; speed: r/mi	n ; torc	que : % .			
	Notice: set the	e level equal to	or higher	than the h	ysteresis.					

Pr1.18	Name Hysteresis at position control switching Range 0~20000 Unit Mode	Mode					F			
	Range	0~20000	Unit	Mode specific	Default	33	Index		2118h	

Combining Pr1.17(control switching level)setup

Notice: when level< hysteresis, the hysteresis is internally adjusted so that it is equal to level.


D 4.40	Name	position gain	switching	time	Mode					F
Pr1.19	Range	0~10000	Unit	0.1ms	Default	33	Index		2119h	

For position controlling: if the difference between 1st gain and 2nd gain is large, the increasing rate of position loop gain can be limited by this parameter.

<Position gain switching time>

Notice: when using position control, position loop gain rapidly changes, causing torque change and vibration. By adjusting Pr1.19 position gain switching time, increasing rate of the position loop gain can be decreased and variation level can be reduced.

Example: 1st (pr1.00) <-> 2nd (Pr1.05)

D 4 0F	Name	:	Special register			Mode							F
Pr1.37	Range	e	0~0xFFFF	Unit	-	Defau	ılt	0		Index		2	137h
	Bit	Pr1.37	7	Details		Bit	Pr1.37	7			Details	;	
	0	0x000		speed out arm (1A1)		7	0x0080				Resistance discharge r-load error (120)		
	1	0x0002	shield the (1A0)	shield the over-speed alar (1A0)			0x0100		Reser	ved			
	2	0x0004	4 Enable vi	Enable virtual IO in homin mode		9	0x0200		shield (0A	1 UVW 3)	wire bi	reak a	larm
	3	0x0008	8 Reserved			10	0x0400		Reserved				
	4	0x0010	o shield the error (10	motor ove	er-load	11	0x0800		shield	l Over-o	current	alarm	(0E0)
	5	0x0020		mit signal output selection in torque		12	Reserve	d					
	6	0x0040	shield the error (19	motor vib	ration	13	Reserve	d					

4.2.3 [Class 2] Vibration Suppression

D • 00	Name	Adaptive filter	r mode set	up	Mode							F	
Pr2.00	Range	0~4	Unit	-	Default	0		Index			2200h		
	Set up the reso	onance frequen	cy to be es	timated b	y the adaptive filt	er and	the s	pecial	the op	eratio	n aftei		
	Setup value		Details										
	0	Adaptive fil	ter: invalid	1 1	meters related to current value.	the 3r	d and	4th no	tch fil	ter ho	ld		
	1	Adaptive fil valid, one ti		is 3rd r	One adaptive filter is valid, parameters related to the 3rd notch filter will be updated based on adaptive performance. After updated, Pr2.00 returns to 0, stop self-adaptation.								
	2	Adaptive filter 1 filter One adaptive filter is valid parameters re						related	l to the	_			

	is valid, It will be valid	3rd notch filter will be updated all the time based on
	all the time	adaptive performance.
3-4	Not use	Non-professional forbidden to use

D 0 04	Name	1st notch freq	uency		Mode					F
Pr2.01	Range	50~2000	Unit	Hz	Default	2000	Index		2201h	
	Set the center	frequency of th	ne 1st not	ch filter						

Notice: the notch filter function will be invalidated by setting up this parameter to "2000".

D 0 00	Name	1st notch wid	th selection	n	Mode					F
Pr2.02	Range	0~20	Unit	-	Default	2	Index		2202h	

Set the width of notch at the center frequency of the 1st notch filter.

Notice: Higher the setup, larger the notch width you can obtain. Use with default setup in normal operation.

D 000	Name	1st notch dept	h selection	1	Mode					F
Pr2.03	Range	0~99	Unit	-	Default	0	Index		2203h	

Set the depth of notch at the center frequency of the 1st notch filter.

Notice: Higher the setup, shallower the notch depth and smaller the phase delay you can obtain.

D 0 0 1	Name	2nd notch free	quency		Mode					F
Pr2.04	Range	50~2000	Unit	Hz	Default	2000	Index		2204h	
	Set the center	frequency of th	ne 2nd no	tch filter						

Notice: the notch filter function will be invalidated by setting up this parameter to "2000".

D 4 0 F	Name	2nd notch wic	dth selection	n	Mode					F
Pr2.05	Range	0~20	Unit	-	Default	2	Index	22	05h	

Set the width of notch at the center frequency of the 2nd notch filter.

Notice: Higher the setup, larger the notch width you can obtain. Use with default setup in normal operation.

D 000	Name	2nd notch dep	th selection	n	Mode					F
Pr2.06	Range	0~99	Unit	-	Default	0	Index		2206h	

Set the depth of notch at the center frequency of the 2nd notch filter.

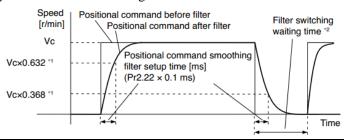
Notice: Higher the setup, shallower the notch depth and smaller the phase delay you can obtain.

TO 4 0 T	Name	3rd notch free	luency		Mode					F
Pr2.07	Range	50~2000	Unit	Hz	Default	2000	Index		2207h	

Set the center frequency of the 3rd notch filter

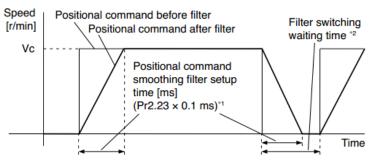
Notice: the notch filter function will be invalidated by setting up this parameter to "2000".

Setup invalid after opening self-adaptation function.


D 0 1 1	Name	1st damping f	requency		Mode					F
Pr2.14	Range	10~2000	Unit	0.1Hz	Default	0	Index		2214h	
	0: close Setup dampin	g frequency, to	suppress v	vibration a	t the load edge.					

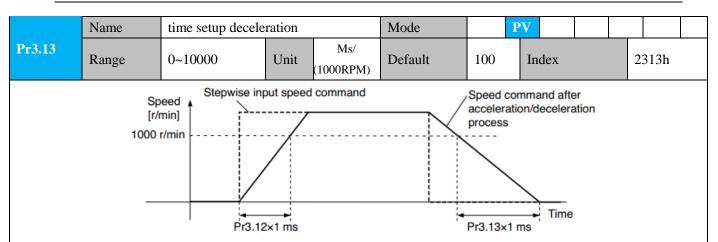
D 0.45			Mode					F		
Pr2.15	Range	10~2000	Unit	0.1Hz	Default	0	Index		2215h	
	0: close							_		

Setup damping frequency, to suppress vibration at the load edge.


Pr2.22	Name	positional confilter	mmand sn	noothing	Mode	PP		НМ			
	Range	0~32767	Unit	0.1ms	Default	0	Index		22	222h	

- Set up the time constant of the 1st delay filter in response to the positional command.
- When a square wave command for the target speed Vc is applied, set up the time constant of the 1st delay filter as shown in the figure below.

		Name	positional cor	nmand FII	R filter	Mode	PP			HM			
P	r2.23	Range	0~10000	Unit	0.1ms	Default	0	Iı	ndex		2	2223h	

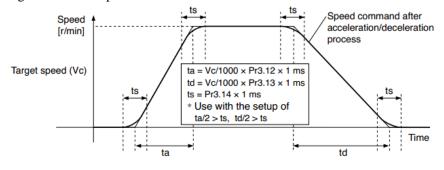

- Set up the time constant of the 1st delay filter in response to the positional command.
- When a square wave command for the target speed Vc is applied, set up the Vc arrival time as shown in the figure below.

4.2.4 【Class 3】 Velocity/ Torque Control

	Name	time setup accele	ration		Mode	P	V			
Pr3.12	Range	0~10000	Unit	Ms/ (1000RPM)	Default	100	Index		2312h	

Set up acceleration/deceleration processing time in response to the speed command input. Set the time required for the speed command(stepwise input)to reach 1000r/min to Pr3.12

Acceleration time setup. Also set the time required for the speed command to reach from 1000r/min to 0 r/min, to Pr3.13 Deceleration time setup.


Assuming that the target value of the speed command is Vc(r/min), the time required for acceleration /deceleration can be computed from the formula shown below.

Acceleration time (ms)=Vc/1000 *Pr3.12 *1ms

Deceleration time (ms)=Vc/1000 *Pr3.13 *1ms

	Name	Sigmoid accelerate	tion/decele	eration	Mode		PV				
Pr3.14	Name	time setup	ne setup				1 1				
	Range	0~1000	Unit	ms	Default	0	Inc	lex	2	314h	

Set S-curve time for acceleration/deceleration process when the speed command is applied. According to Pr3.12 Acceleration time setup and Pr3.13 Deceleration time setup, set up sigmoid time with time width centering the inflection point of acceleration/deceleration.

4.2.5 [Class 4] I/F Monitor Setting

D 4.02	Name	Input selection D	I3		Mode						F
Pr4.02	Range	0~00FFFFFFh	Unit	_	Default	0x14		Inde	X	2402h	
D 4.02	Name	Input selection D	I4	Mode						F	
Pr4.03	Range	0~00FFFFFFh	Default	0x16	Ó	Inde	X	2403	h		
D 404	Name	Name Input selection DI5			Mode						F
Pr4.04	Range	0~00FFFFFFh	Unit	_	Default	0x01		Inde	X	2404	h
Name	Name	Input selection D	I6		Mode						F
Pr4.05	Range	0~00FFFFFFh	Unit	_	Default	0x02	2	Inde	X	2405	h

Assign functions to digital inputs.

This parameter use 16 binary system to set up the values,

For the function number, please refer to the following table.

		Setuj	p value	
Signal	Symbol	Normally	Normally	0x60FD(bit)
		open	closed	
Invalid	_	00h	Do not setup	×
Positive direction over-travel inhibition input	POT	01h	81h	1
Negative direction over-travel inhibition input	NOT	02h	82h	0
Alarm clear input	A-CLR	04h	Do not setup	
Forced alarm input	E-STOP	14h	94h	
HOME-SWITCH	HOME-SWITCH	16h	96h	2

- Normally open means input signal comes from external controller or component, for example: PLC.
- · Normally closed means input signal comes from drive internally.
- Don't setup to a value other than that specified in the table.
- Don't assign specific function to 2 or more signals. Duplicated assignment will cause Err210 I/F input multiple assignment error 1 or Err211 I/F input multiple assignment error 2.
- E-STOP: Associated parameter Pr4.43

D 440	Name	Output selection	DO1		Mode					F
Pr4.10	Range	0~00FFFFFh Unit —		Default	0x81	Inde	X	2410	h	
-	Name	Output selection	DO2		Mode					F
Pr4.11	Range	0~00FFFFFFh	Unit		Default	0x02	Inde	X	2411	h

Assign functions to digital outputs.

This parameter use 16 binary system do setup

For the function number, please refer to the following table.

Signal name	Samuela al	Setuj	p Value
Signal name	Symbol	Normally open	Normally closed
Master control output	_	00h	Do not setup
Alarm output	Alm	81h	01h
Servo-Ready output	S-RDY	02h	82h
Eternal brake release signal	BRK-OFF	03h	83h
Positioning complete output	INP	04h	84h
At-speed output	AT-SPPED	05h	85h
Torque limit signal output	TLC	06h	86h
Zero speed clamp detection output	ZSP	07h	87h
Velocity coincidence output	V-COIN	08h	88h
Positional command ON/OFF output	P-CMD	0Bh	8Bh
Speed limit signal output	V-LIMIT	0Dh	8Dh
Speed command ON/OFF output	V-CMD	0Fh	8Fh
Servo enable state output	SRV-ST	12h	92h
Homing process finish	HOME-OK	22h	A2h

- Normally open: Active low
- Normally closed: Active high
- Don't setup to a value other than that specified in the table.
- Pr4.10~Pr4.11 correspond to DO1~DO2 respectively.

4

Pr4.31 Range 0~10000 Unit Default 10 Index 2431h	- 1 A1	Name	Positioning com	plete ran	ge	Mode	PP		HM			
	Pr4.31	Range	0~10000	Unit		Default	10	Index	ζ	24	31h	

Setup the timing of positional deviation at which the positioning complete signal (INP1) is output.

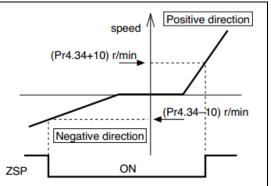
Pr4.32	Name	Positioning comp setup	lete outp	ut	Mode	PP			нм			
	Range	0~4	Unit	-	Default	0		Index		24	32h	
	Select the con	ndition to output th	e positio	ning con	plete signal (INF	P1).						
	Setup value	Action of pos	itioning o	complete	signal							
	0	The signal wil complete rang		when the	positional devia	tion is	small	er thar	n Pr4.31	[posi	tioni	ng
	1	The signal will turn on when there is no position command and position de smaller than Pr4.31 [positioning complete range].								viation	ı is	
	2		the signal will turn on when there is no position command, the zero-speed detection gnal is ON and the positional deviation is smaller than Pr4.31 [positioning complete ange].									
	3	The signal will is smaller than next position of INP hold time	the signal will turn on when there is no position command and the positional deviation is smaller than Pr4.31 [positioning complete range]. Then holds "ON" states until the ext position command is entered. Subsequently, ON state is maintained until Pr4.33 NP hold time has elapsed. After the hold time, INP output will be turned ON/OFF ecording to the coming positional command or condition of the positional deviation.									
	When there is no command, the position determination starts after								he dela	y time		

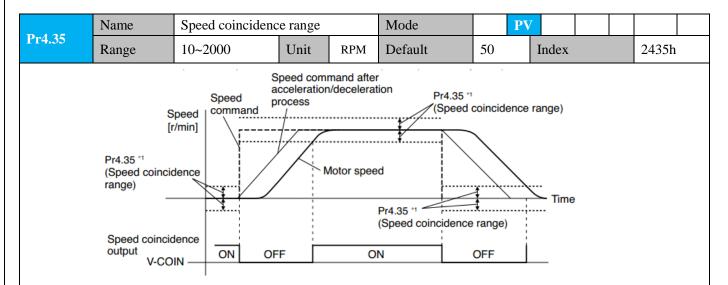
D 4.00	Name	INP hold time			Mode	PP		HM			
Pr4.33	Range	0~15000	Unit	1ms	Default	0	Inde	ex	24	33h	
	Set up the ho	ld time when Pr 4.	32 positio	oning co	mplete output set	tup=3.	•				
	Setup value	e State of Positi	te of Positioning complete signal								
	0		The hold time is maintained definitely, keeping ON state until next positional ommand is received.								
	1-15000				time (ms) but sw during hold time		l to OFF s	state as the			

deviation is smaller than Pr4.31 [positioning complete range]

Pr4.33. The signal will turn on when there is no position command and positional

5 4 2 4	Name	Zero-speed			Mode					F
Pr4.34	Range	10~2000	Unit	RPM	Default	50	Index	2	434h	




The rotation speed (RPM) was used to set the output timing sequence of the zero speed detection output signal (ZSP). When the motor speed is lower than the setting speed of this parameter, zero speed detection signal (ZSP) is output.

You can set up the timing to feed out the zero-speed detection output signal(ZSP or TCL) in rotate speed (r/min).

The zero-speed detection signal(ZSP) will be fed out when the motor speed falls below the setup of this parameter, Pr4.34

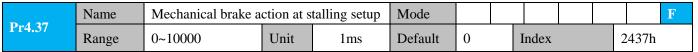
- the setup of pr4.34 is valid for both positive and negative direction regardless of the motor rotating direction.
- There is hysteresis of 10[r/min].

Set the speed coincidence (V-COIN) output detection timing.

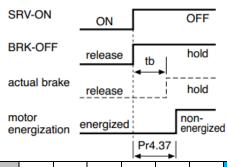
Output the speed coincidence (V-COIN) when the difference between the speed command and the motor speed is equal to or smaller than the speed specified by this parameter.

Because the speed coincidence detection is associated with 10 r/min hysteresis, actual detection range is as shown below.

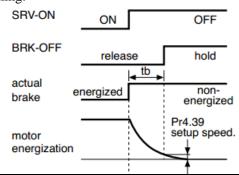
Speed coincidence output OFF -> ON timing (Pr4.35 -10) r/min Speed coincidence output ON -> OFF timing (Pr4.35 +10) r/min


D 406	Name	At-speed(Speed a	ırrival)		Mode	P	V			
Pr4.36	Range	10~2000	Unit	RPM	Default	1000	Index		2436	5h

Set the detection timing of the speed arrival output (AT-SPEED).


When the motor speed exceeds this setup value, the speed arrive output (AT-SPEED) is output. Detection is associated with 10r/min hysteresis .

Motor brake delay time setup, mainly used to prevent servo on "galloping "phenomenon. Set up the time from when the brake release signal(BRK-OFF) turns off to when the motor is de-energized (servo-free), when the motor turns to servo-off while the motor is at stall


- Set up to prevent a micro-travel/drop of the motor (work) due to the action delay time(tb) of the brake.
- After setting up Pr4.37>=tb, then compose the sequence so as the drive turns to servo-off after the brake is actually activated.

Pr4.38	Name	Mechanical brake a setup	ction at r	unning	Mode					F
	Range	0~10000	Unit	1ms	Default	0	Index		2438h	

Mechanical brake start delay time setup, mainly used to prevent servo off "galloping "phenomenon. Set up time from when detecting the off of servo-on input signal(SRV-ON)is to when external brake release signal(BRK-OFF)turns off, while the motor turns to servo off during the motor in motion.

- Set up to prevent the brake deterioration due to the motor running.
- At servo-OFF during the motor is running, the of the right fig will be a shorter one of either Pr4.38 setup time, or time lapse till the motor speed falls below Pr4.39 setup speed.

D 4.00	Name	Brake release speed	l setup		Mode						F
Pr4.39	Range	30~3000	Unit	1ms	Default	30		Index		2439h	
	Set up the	speed timing of braking output checking during operation									

D 4.40	Name	E-stop function			Mode						F
Pr4.43	Range	0~1	Unit	-	Default	0	Index		24	443h	
	0: When E-STOP is effective, the servo will forced to STOP and servo-disabled, and alarm showing (Err570).										

1: When E-STOP is effective, the servo will forced to STOP and keep in servo-enable, no alarm showing.

4.2.6 [Class 5] Extended Setup

	Name	Over-travel inhibit i	nput setu	ıp	Mode						F
Pr5.04	Range	0~2	Unit		Default	0	Index			2504h	
	set to 1, no	effect on homing mo	de.						•		
	Setup va										
	0	positive and ne	positive and negative limit effective, no alarm output								
	1	positive and negative limit effective invalid									
	2	positive and ne	positive and negative limit effective, alarm Err26.0								
	In homing	mode, POT/NOT inv	alid Sett	ings please se	t the object of	lictionary	5012-04	bit0=1	1		

	Name	Stop mode			Mode						F
Pr5.06	Range	0~1	Unit	_	Default	0		Index		2506h	ı
	Specify the	e status during dec	eleration and	after sto	p, after servo-off.						
	Setup va	lue Details									
	0 Disabled when disable signal effective and speed reduce to Pr4.39										
	1	Disabled when disable signal effective, free-run to stop									

D # 00	Name	LV trip selection at m	ain powe	r OFF	Mode						F
Pr5.08	Range	0~1	Unit		Default	1	I	ndex		25081	h

You can select whether or not to activate Err0d.0 (main power under-voltage protection)function while the main shutoff continues for the setup of Pr5.09(The main power-OFF detection time).

Setup value	Action of main power low voltage protection
0	When the main power is shut off during Servo-On,Err0d.0 will not be triggered and the drive turns to Servo-OFF. The drive returns to Servo-On again after the main power resumption.
1	When the main power is shut off during Servo-On, the drive will trip due to Err0d.0

Caution: Err0d.0(main power under-voltage protection) is trigged when setup of Pr5.09 is long and P-N voltage of the main converter falls below the specified value before detecting the main power shutoff, regardless of the Pr5.08 setup.

Pr5.09	Name	The main power-O time	FF detec	tion	Mode							F
	Range	70~2000	Unit	1ms	Default	70		Index		25	091	n
		•	e time to detect the shutoff while the main power is kept shut off continuous tection is invalid when you set up this to 2000.							y. Th	e	

D. 5 11	Name	Torque setup for e	emergency	stop	Mode				F
Pr5.11	Range	0~500	Unit	%	Default	0	Index	25111	n

Set up the torque limit at emergency stop

When setup value is 0, the torque limit for normal operation is applied.

Compared with the maximum torque 6072, the actual torque limit value is smaller one.

	Name	Over-load lev	vel setup		Mode				\mathbf{F}	
Pr5.12	Range	0~115	Unit	%	Default	0	Index	2	2512h	

You can set up over-load level. The overload level becomes 115% by setting up this value to 0. Use this with 0 setup in normal operation, set up other value only when you need to low this over-load level.

The setup value of this parameter is limited by 115% of the motor rating.

D # 40	Name	Over-speed	level setup	Mode					F		
Pr5.13	Range	0~10000	Unit	RPM	Default	0	Inde	ex	251	3h	

If the motor speed exceeds this setup value, Err1A.0 [over-speed protect] occurs.

The over-speed level becomes 1.2 times of the motor max, speed by setting up this to 0.

5. 5. 60	Name Position setup unit select				Mode					F
Pr5.20	Range	0~2	Unit	_	Default	2	Index	ζ.	2520h	

Specify the unit to determine the range of positioning complete and excessive positional deviation

Setup value	unit
0	Encoder unit
1	Command unit
2	Standard 2500-line unit

D # 64	Name	Selection of torqu	ie limit		Mode					F
Pr5.21	Range	0~2	Unit	_	Default	0	Index	2	2521h	

Set up the torque limiting method;

Setup value	Positive limit value	Negative limit value
0	Pr0.13	Pr0.13
1	Pr0.13	Pr5.22
2	60E0	60E1

Compared with the maximum torque 6072, the actual torque limit value is smaller one

	Name	2nd torque limit			Mode							F
Pr5.22	Range	0~500	Unit	%	Default	300		Index			2522h	
	Set up the 2 nd	limit value of th	e motor t	orque ou	tput					•		
The value of the parameter is limited to the maximum torque of the app							cable	motor	:			

Compared with the maxim	num torque 6072, the act	ual torque limit v	alue is smaller one

D # 40	Name LED initial status		Mode					F		
Pr5.28	Range	0~42	Unit		Default	34	Index		2528h	

You can select the type of data to be displayed on the front panel LED (7-segment) at the initial status after power-on.

wer-on.		~ .		~ .	
Setup value	content	Setup value	content	Setup value	content
0	Positional command deviation	15	Over-load factor	30	Number of abnormal communication of encoder
1	Motor speed	16	Inertia ratio	31	Accumulated operation time
2	Positional command speed	17	Factor of no-motor running	32	Automatic motor identification
3	Velocity control command	18	No. of changes in I/O signals	33	Temperature information
4	Torque command	19	Number of overcurrent signals	34	Servo state
5	Feedback pulse sum	20	Absolute encoder data	35	/
6	Command pulse sum	21	Absolute external scale position	36	Synchronous period
7	Maximum torque during motion	22	Absolute multi-turn position	37	Synchronous loss time
8		23	Communication axis address	38	Synchronous type
9	Control mode	24	Encoder positional deviation[encoder unit]	39	Whether DC is running or not
10	I/O signal status	25	Motor electromechanical angle	40	ACC/DEC
11	/	26	Motor mechanical Angle	41	Sub-index of OD index
12	Error factor and reference of history	27	Voltage across PN	42	The value of sub-index of OD index
13	Alarm code	28	Software version		
14	Regenerative load factor	29			

Notes: Valid after restart the power.

Pr5.33	Name	Touch probe 1 signatime								F
	Range	0~32767	Unit	25ns	Default	0	Index		2533h	

Time compensation for signal acquisition of touch probe 1 to provide more accurate capture position and prevent the instantaneous jitter of capture during master and slave cooperation

Pr5.34	Name Touch probe 2 signal comptime	compens	ation	Mode					F	
110101	Range	0~32767	Unit	25ns	Default	0	Index		2534h	

Time compensation for signal acquisition of touch probe 2 to provide more accurate capture position and prevent the instantaneous jitter of capture during master and slave cooperation

Pr5.37	Name Torque saturation alarm detection time		ion	Mode					F	
	Range	0~5000	Unit	ms	Default	500	Index		2537h	

When the duration of torque saturation reaches this value, the torque saturation signal will turn on.

- 1. Enable the torque saturation alarm, this parameter can be set to specify the output time of the torque saturation signal
- $2\sqrt{2}$ Disable the torque saturation alarm, this parameter can be set to specify the output time after the torque limit arrives while the homing method is torque detection.

D # 20	Name	3rd torque limit			Mode						F		
Pr5.39	Range	0~500	Unit	%	Default	80	Index			2539h			
Set the torque limit of torque limit detection homing method.													
	Compared wi	ith the maximum to	orque 607	2, the ac	tual torque limit	value i	s smaller o	ne.					

4.2.7 [Class 6] Special Setup

D < 04	Name	Encoder zero position	n compen	sation	Mode						F
Pr6.01	Range	0~360	Unit	0	Default	0]	Index		2601h	
	The Angl	e of the encoder after a	zero corre	ection.					-		

		Name	JOG trial run com	nmand sp	eed	Mode						F
P	r6.04	Range	0~10000	Unit	r/min	Default	300	I	Index		2604h	
		You can set u	p the command sp	eed used	for JOG	trial run (velocity	contro	ol).		•		

	Name	Position 3rd gain	valid tim	ne	Mode	PP		HM						
Pr6.05	Range	0~10000	Unit	0.1ms	Default	0	Inde	X	2	2605h				
	Set up the tin	me at which 3 rd gain becomes valid.												
	When not using this parameter, set PR6.05=0, PR6.06=100													
	This is valid for only position control/full-closed control.													
D (0 (Name													
Pr6.06														
	Set up the 3 rd	gain by multiplyir	ng factor	of the 1st	gain									
	3rd gain= 1st	gain * Pr6.06/100												

Pr6.07	Name	Torque command value	addition	al	Mode				F
	Range	-100~100	Unit	%	Default	0	Index	2607h	
Pr6.08	Name	Positive direction compensation val	-		Mode				F
	Range	-100~100	Unit	%	Default	0	Index	2608h	
Pr6.09	Name	Negative direction compensation val	-		Mode				F
	Range	-100~100	Unit	%	Default	0	Index	2609h	

These three parameters may apply feed forward torque superposition directly to torque command.

D (11	Name	Current response	setup		Mode					F
Pr6.11	Range 50~100 Un		Unit	%	Default	100	Index		2611h	
	Set the effective	ve value ratio of dr	ive currer	nt loop re	elated parameters	•	·			

Pr6.12	Name	Setting of torque correction of enco		zero	Mode							F	
	Range	-300~300	Unit	%	Default	50		Index		2	2612h		
	Setting of torque limit for zero correction of encoder.												

D (10	Name	2nd inertia ratio			Mode						F
Pr6.13	Range	0~10000	Unit	%	Default	0]	ndex		2613h	
	Set up 2nd ine	rtia ratio									

D (11	Name	Emergency stop t	ime at ala	arm	Mode							F
Pr6.14	Range	0~3000	Unit	ms	Default	200		Index			2614h	
	Set up the tin	ne allowed to comp	olete eme	rgency st	top in an alarm co	onditio	n, exc	ceeding	g this	time p	outs thi	S

D (00	Name	Trial run distance			Mode					F
Pr6.20	Range	0~1200	Unit	0. 1rev	Default	10	Index		2620h	
	The distance	of running each tir	ne in JO	G run(pos	sition control)					

D (4)	Name	Trial run waiting	time		Mode					F
Pr6.21	Range	0~30000	Unit	ms	Default	100	Index	2	620h	
	The waiting t	time after running	each time	in JOG	run(position cont	rol)				

D (00	Name	Trial run cycle tir	nes		Mode			F	
Pr6.22	Range	0~32767	Unit		Default	1	Index	2622h	
	The cycling t	times of JOG run(p	osition co	ontrol)					

D (A	Name	Acceleration of tr	ial runnii	ng	Mode					F
Pr6.25	Range	0~32767	Unit	ms	Default	100	Index		2625h	
	Acceleration	of trial running						-		

	Name	Mode of trial run	ning	Mode					F
Pr6.26	Range	0~32767	Unit	Default	0	Index		2626h	
	0: Normal t	rial run mode			•	•			
	1 4 - :	ada fan manufaatuu							

D (01	Name	Frame error wind	ow time		Mode						F
Pr6.34	Range	0~32767	Unit	ms	Default	100	I	Index		2634h	
	Set the CAN	open data frame er	ror alarm	detection	n window time				-		

D (0)	Name	Frame error wind	ow		Mode					F
Pr6.35	Range	0~32767	Unit	ms	Default	50	Index		2635h	
	Set the CAN	open data frame eri	ror alarm	detection	n window		•			

D (()	Name	Z signal duration	time		Mode					F
Pr6.61	Range	0~1000	Unit	ms	Default	10	Index	2	2661h	

Set the high level holding time of Z signal

- 1、Z signal for 60FDH;
- 2. Z signal for homing process

	Name	Overload warning	g threshol	ld	Mode					F
Pr6.62	Range	0~99	Unit	%	Default	0	Index		2662h	
	Before an ov	erload alarm, pre-	alarm.							

Pr6.63	Name	upper limit of mu absolute position			Mode					F
	Range	0~32766	Unit	r	Default	0	Index		2663h	
	While Pr0.15	=2, the feedback p	osition w	rill loop l	oetween () - (Pr6.0	53+1)*]	Encoder re	solution		

4.2.8 [Class 7] Factory setting

Pr7. 15	Name	Motor model input				Mode	P	S	T
Pr7. 15	Range	0~7FFF	Unit			Default	0		
Pr7. 16	Name	Encoder selection				Mode	P	S	T
Pr7. 10	Range	0~30000	Unit			Default	0		
		Motor Model	Pr7.1:	5	Pr7.16	5			
		ACM602V36-1000	0x800	1	0x201				
		ACM602V36-2500	0x800	1	0x204				
		57BL180D-1000	0x800	3	0x201				
		ACM604V60-1000	0x800	2	0x201				

ACM604V60-2500	0x8002	0x204	
ELDM6020V36HL-A5	0x8004	0x201	
ACM602V36-T-2500	0x8006	0x204	
ACM602V24-T-2500	0x8007	0x204	
ELDM4005V24HL-B5	0x8008	0x204	
ELDM4010V24HL-B5	0x8009	0x204	
ELDM6020V48HL-A5	0x800B	0x201	
ELDM6040V48HL-A5	0x800C	0x201	
ELDM6040V60HL-A5	0x800D	0x201	
ELDM6060V48HL-A5-HD	0x800E	0x201	
ELDM8075V48HM-A4-HD	0x8010	0x201	
ELDM6020V24GL-A5	0X8016	0x201	
ELDM6020V48HL-A5	0X8017	0x201	
ELDM6040V24HL-A5	0X8018	0x201	

D # 21	Name	Regenerativ	e resistance control mo	de setting	7	Mode		P	S	T
Pr7.31	Range	0~2		Unit		Default		0		
		Setup value		Details						
		0	0 Disable regenerative resistance discharge							
		1	Enable reactive pump	lift supp	ression fund	ction				
		2	Enable regenerative i							
Notice:	ee:									

D-7 22		Name	Regenerative resistance open thresh	hold settin	ıg	Mode	P	S	T
Pr7.32		Range	20~90	V	Default	80			
The ext	ernal 1	resistance is	activated when the actual bus voltag	er than Pr7.3	32 plus Pr7.33 a	nd is			
deactiv	ated w	hen the actu	nal bus voltage is lower than Pr7.32 i	minus Pr7	.33				
Notice:									

D. # 22	Name	Regenerative resistance control hys	Regenerative resistance control hysteresis					
Pr7.33	Range	1~50	5					
The external	resistance is	ce is activated when the actual bus voltage is higher than Pr7.32 plus Pr7.33 and is						
deactivated w	hen the actu	nal bus voltage is lower than Pr7.32 r	ninus Pr7.	.33				
Notice:								

4.3 402 Parameters Function

Index	Name	Error c	ode			-	Structure	VAR	Type	Uint 16
603FH	Access	RO	Mapping	TPD0	Mode	ALL	Range	0-6553 5	Default	-
Index	Name	Contro	l word	•			Structure	VAR	Type	Uint 16

6040H	Access	RW	Mapping	RPDO	Mode	e ALL	Range	0-6553 5	Default	0
	Bit	15~11	10~9	8	7	6~4	3	2	1	0
	Definition	-	-	Halt	Fault reset	Mode specific	Enable operation	Quick stop	Enable voltage	Switch on

Index	Name	Status w	ord					Structure	VAR	Type	Uint 16
6041H	Access	RO	Mapping	TPDO	Mod	le	ALL	Range	0-0X FFFF	Default	0
	Bit	7	6		5		4	3	2	1	0
	Definition	Reserve	d			Quick Volta		Fault	Operation enable	Switch on	Ready to switch on
	Bit	15	14	14		1	12	11	10	9	8
	Definition	Reserve	eserved Reserv		Mode specific		ode cific	Position limit active	Target reached	Remote	Mode specific

Index	Name	Quick	stop option co	de			Structure	VAR	Type	INT 16
605AH	Access	RW	Mapping		Mode	ALL	Range	0-7	Default	0

PP, PV Mode

- 0 : Stop according to 3506h(Sequence at Servo-off), keeping Switch on disabled
- 1 : Stop according to 6084h(Profile deceleration), keeping Switch on disabled
- 2 : Stop according to 6085h(Quick stop deceleration), keeping Switch on disabled
- 3 : Stop according to 60C6h(Max deceleration), keeping Switch on disabled
- 5 : Stop according to 6084h(Profile deceleration), keeping Quick stop active
- 6 : Stop according to 6085h(Quick stop deceleration), keeping Quick stop active
- 7 : Stop according to 60C6h(Max deceleration), keeping Quick stop active

HM Mode

- 0 : Stop according to 3506h(Sequence at Servo-off), keeping Switch on disabled
- 1 : Stop according to 609Ah(Homing acceleration), keeping Switch on disabled
- 2 : Stop according to 6085h(Quick stop deceleration), keeping Switch on disabled
- 3 : Stop according to 60C6h(Max deceleration), keeping Switch on disabled
- 5 : Stop according to 609Ah(Homing acceleration), keeping Quick stop active
- 6 : Stop according to 6085h(Quick stop deceleration), keeping Quick stop active
- 7 : Stop according to 60C6h(Max deceleration), keeping Quick stop active

Index	Name	Halt op	otion code				Structure	VAR	Type	INT 16
605DH	Access	RW	Mapping	_	Mode	ALL	Range	1-3	Default	1

PP, PV Mode

- 1 : Stop according to 6084h(Profile deceleration), keeping Operation enabled
- 2 : Stop according to 6085h(Quick stop deceleration), keeping Operation enabled
- 3 : Stop according to 6072h(Max torque)、60C6h(Max deceleration), Stop according to torque=0Operation enabled

HM Mode

- 1 : Stop according to 609Ah(Homing acceleration), keeping Operation enabled
- 2 : Stop according to 6085h(Quick stop deceleration), keeping Operation enabled
- 3 : Stop according to 6072h(Max torque), 60C6h(Max deceleration), keeping Operation enabled

Index	Name	Mode o	of operation				Structu	ıre	VAR	Type	int 8
6060H	Access	RW	Mapping	RPD0	Mode	ALL	Range		0-10	Default	0
			NO	Mode							
			1	Profile position mode				PP			
			3	P	rofile velocity	y mode		PV			
			4	profile Torque mode				PT			
			6	Homing mode			HM	[

Index	Name	Mode o	of opera	ation di	isplay			Structure	e	VAR	Type	int 8
6061H	Access	R0	Mapp	ping	TPD0	Mode	ALL	Range		0-10	Default	0
			1	NO		Mod	e					
				1	Profile position mode)	PI)		
				3		Profile velocity mode			PV	V		
				4	profile Torque mode				P	Γ		
				6		Homing 1	node		HN	M		

Index	Name	Actual in	nternal positio	n value		-	Structure	VAR	Type	Dint 32
6063H	Access	RO	Mapping	TPD0	Mode	ALL	Range	Encoder unit	Default	-
	Actual inte	ernal positi	on value, Enc	oder unit						

Index	Name	Actual fe	edback positi	on value		-	Structure	VAR	Type	Dint 32
6064H	Access	RO	Mapping	TPD0	Mode	ALL	Range	Command unit	Default	1
	Actual fee	dback posi	tion value, Co	ommand U	Jnit.					
	6064H * g	ear ratio(R	ef. 6092H-01	= 6063H	[

Index						-	Structure	VAR	Type	int 32
607AH	Access	RW	Mapping	RPD0	Mode	PP	Range	Command unit	Default	-
	Target Pos	ition for P	P Mode							

-	Indov	Name	Motor rotation direction					Structure	VAR	Type	Uint 8
	Index 607EH	Access	RW	Mapping	RPDO	Mode	ALL	Range	00-F F	Default	0

Mode		Value
Position	PP	0: Rotate in the same direction as the position command
mode	HM	128: Rotate in the opposite direction as the position command
Velocity	PV	0: Rotate in the same direction as the position command
mode	PV	64: Rotate in the opposite direction as the position command
ALL		0: Rotate in the same direction as the position command
mode		224: Rotate in the opposite direction as the position command

Index	Name	Encoder re	solution			-	Structure	VAR	Type	Dint 32
608FH-0 1	Access	RO Mapping TPDO		Mode	ALL	Range		Default		
	Read mo	tor encoder	resolution							

Index	Name	Electronic	gear molecul	e		-	Structure	VAR	Type	Dint 32
6091H-01	Access	RW	Mapping	RPD0	Mode	ALL	Range		Default	
	Set the re	solution of	motor encode	r						
Index	Name	Electronic	gear denomir	nator		•	Structure	VAR	Type	Dint 32
6091H-02	Access	RW	Mapping	RPDO	Mode	ALL	Range	Command unit	Default	-
	Set the nu	umber of pu	lses required	for one r	notor rotation	•				
Index	Name	Number of	f pulses per ro	tation		-	Structure	VAR	Type	Dint 32
6092H-01			RPD0	Mode	ALL	Range	Command unit	Default	-	

If $2008H \neq 0$, 6092H-01 does not take effect. Electronic gear ratio = Encoder resolution / 2008H.

If 2008H = 0, 6092H-01 takes effect.

If 6092H-01(Feed constant) is not equal to 608Fh(Position encoder resolution), then:

Electronic gear ratio = Encoder resolution / 6092H-01

If 6092H-01(Feed constant) is equal to 608Fh(Position encoder resolution), then:

Electronic gear ratio = 6091H-01 / 6091H-02

Index	Name	Homin	g Method				Structure	VAR	Type	Uint 8			
6098H	Access	RW	Mapping	RPD0	Mode	ALL	Range	0-35	Default	0			
	Homing Method Description												
	-6	Search th	e homing poi	int with l	ow speed neg	ative di	rection, when th	e torque	reached the	en stop			

		1	
	immediately		
-5	Search the homing point with low speed positive direction, when the torq	ue reached then sto	эр
	immediately		
-4	Search the homing point with low speed negative direction, when the torce	use reached then	

	1
	change the motion direction, when the torque is gone then stop immediately
-3	Search the homing point with low speed positive direction, when the torque reached then
	change the motion direction, when the torque is gone then stop immediately
-2	Search the homing point with low speed negative direction, when the torque reached then
	reverse the direction, when the torque is gone and Z signal coming then stop immediately
-1	Search the homing point with low speed positive direction, when the torque reached then
	reverse the direction, when the torque is gone and Z signal coming then stop immediately
1	Search the homing point in negative direction, deceleration point is negative limit switch,
	homing point is motor Z signal, the negative limit switch falling edge must come before Z
	signal
2	Search the homing point in positive direction, deceleration point is positive limit switch, homing
0	point is motor Z signal, the positive limit switch falling edge must come before Z signal
3	Search the homing point in positive direction, deceleration point is homing switch, homing
	point is motor Z signal, the falling edge on the same side of homing switch must come before Z
4	signal
4	Search the homing point in negative direction, deceleration point is homing switch, homing
	point is motor Z signal, the rising edge on the same side of homing switch must come before Z
	signal
5	Search the homing point in negative direction, deceleration point is homing switch, homing
	point is motor Z signal, the falling edge on the same side of homing switch must come before Z
6	signal Search the homing point in positive direction, deceleration point is homing switch, homing
6	Search the homing point in positive direction, deceleration point is homing switch, homing
	point is motor Z signal, the rising edge on the same side of homing switch must come before Z
7	signal Search the homing point in positive direction, deceleration point is homing switch, homing
7	Search the homing point in positive direction, deceleration point is homing switch, homing
	point is motor Z signal, the falling edge on the same side of homing switch must come before Z signal
8	Search the homing point in positive direction, deceleration point is homing switch, homing
O	point is motor Z signal, the rising edge on the same side of homing switch must come before Z
	signal
9	Search the homing point in positive direction, deceleration point is homing switch, homing
_	point is motor Z signal, the rising edge on the other side of homing switch must come before Z
	signal
10	Search the homing point in positive direction, deceleration point is homing switch, homing
	point is motor Z signal, the falling edge on the other side of homing switch must come before Z
	signal
11	Search the homing point in negative direction, deceleration point is homing switch, homing
	point is motor Z signal, the falling edge on the same side of homing switch must come before Z
	signal
12	Search the homing point in negative direction, deceleration point is homing switch, homing
	point is motor Z signal, the rising edge on the same side of homing switch must come before Z
	signal
13	Search the homing point in negative direction, deceleration point is homing switch, homing
	point is motor Z signal on the other side of homing switch, the rising edge on the other side of
	homing switch must come before Z signal
14	Search the homing point in negative direction, deceleration point is homing switch, homing
	point is motor Z signal on the other side of homing switch, the falling edge on the other side of
	homing switch must come before Z signal
15	
16	
17-32	Similar with 1-14, but the deceleration point coincides with the homing point
33	Search the homing point in negative direction, homing point is motor Z signal
34	Search the homing point in positive direction, homing point is motor Z signal
35	Set the current position as homing point

User Manual of ELD2-CAN Series Servo Drives

60FDH	Access	RO N	Lapping	TPDO	Mod	de	ALL	Range	0-ff	fff Default		
	The bits of a	60FDh obje	ect are fund	ctionally	defined	defined as follow:						
	Bit31	Bit30	Bit29	Bit	28	Bit27 Bit26 Bit25 Bit24						
	Z signal	Reserved	ed Reserved Reserv		served	Touch		Touch	BRAKI	E INP/V-0	COIN	
	-					Probe	2	Probe 1		/TLC		
	Bit23	Bit22	Bit21	Bit	Bit20			Bit18	Bit17	7 Bit16		
	E-STOP	Reserved	Reserve	d Res	served	Reser	Reserved Reserved		SI14	SI13		
	Bit15	Bit14	Bit13	Bit	12	Bit11		Bit10	Bit9	Bit8		
	SI12	SI11	SI10	SI9		SI8		SI7	SI6	SI5		
	Bit7	Bit6	Bit5	Bit	4	Bit3		Bit2	Bit1	Bit0		
	SI4	SI3	SI2	SI1		Reser	ved	HOME	POT	NOT		

Index	Name	Output va	lid				Struct	ure	VAR	Type	Uint 32
60FEH-0 1	Access	RW N	Mapping	RPDO	Mode	ALL	Range		0-ffff	Default	0
	The bits of a	60FEh obj	ect are func	tionally	defined as fo	llow:					
	Bit Sub-index	31~21	21	20	19		18	17		16	15~0
	01h	Reserve d	DO6 valid	DO5 v	alid DO4	DC	3 valid	DO2 v	alid I	OO1 valid	Reserved

Index	Name	Output en	able					Structur	re	VAR	Type	Uint 32
60FEH-0 2	Access	RW 1	Mapping		Mod	le	ALL	Range	Range		Defaul	t 0
	The bits of a	60FEh obj	ect are fund	tionally	defined	as fo	llow:					
	Bit Sub-index	31~2	1 21		20	1	9	18	17	,	16	15~0
	02h	Reserv	ved DO enab		DO5 enable	D(ena		DO3 enable	DO enal		DO1 enable	Reserved

Chapter 5 CANopen

5.1 CAN Interface

The CAN-bus (Controller Area Network-Bus) is a serial communication protocol developed by Bosch to exchange information between electronic control units on automobiles. This system makes possible to share a great amount of information between nodes and control units appended to the system, leading to a major reduction in both the number of sensors required and the quality of cables in the electrical installation. The CANopen protocol is based in CAN specification, and its frame definition is such that one CAN frame is required for each CANopen message.

5.2 CANopen protocol

CANopen is the internationally standardized CAN-based higher-layer protocol for embedded control system, as developed and maintained by CiA members. The set of CANopen specifications comprise the application layer and communication profile, as well as application, device, and interface profiles. CANopen provides very flexible configuration capabilities, and for this reason CANopen networks are used in a very broad range of application fields, such as machine control, medical devices, off-road and rail vehicles, maritime electronics, building automation, power generation, etc.

The CANopen protocol defines basically two aspects of the communication protocol: how the communication should be formatted (CANopen frame), and what objects are defined in common. Those objects may be used to configure or arbitrate the communication, or simply to exchange application data. Communication objects are available to:

- Exchange process and service data.
- Process or system time synchronization.
- Error state supervision.
- Control and monitoring of node states.

ELD2-CAN series follow the communication rules:

- Comply with CAN 2.0A standard
- Comply with CANopen standard protocol DS 301 _V4.02
- Comply with CANopen standard protocol DSP 402 _V2.01

5.2.1 CANopen frame

CANopen protocol is based in CAN frames and uses one CAN frame for each CANopen message. There are two important parts of the frame that the user needs to modify: the arbitration field and the data field. The rest of the fields of the frame are normally automatically configured by the CAN hardware.

Arbitration field

In CANopen messages the identifier part of the arbitration field is known as Communication Object Identifier (COB-ID) . It is divided into a 4-bit part function code and a 7-bit node-ID as depicted::

Bit number:	10	9	8	7	6	5	4	3	2	1	0
	Identifier (COB-ID)										
	Function code						Node-ID)			

COB-ID

description

Parallel to CAN, every node on a CANopen network must have a unique node-ID. The range of valid values comprises from 1 to 127. Zero is not allowed.

Similarly, the priority is determined by the COB-ID and RTR bits. As expected, the RTR bit on the arbitration field is used to request information from a remote node. In particular, it is used to implement the node guarding and TPDO request features, explained in the following chapters. With the exception of these two circumstances, the RTR bit is always set to zero.

The function cade determines the communication object, which should be one of the allowed in CANopen. The final COB-ID od the object depends on the ID of which node receives or transits the message, which allows to further establish priorities between nodes for the same function code.

In a master/slave communication, the message could be divided into two groups, as shown in the following tables.

• CANopen broadcast messages:

Communication Object	Function code(binary)	COB-ID(hex)
NMT service	0000b	0x000
SYNC	0001b	0x080

• CANopen peer-to-peer messages:

Communication Object	Function code(binary)	COB-ID(hex)	Object Dictionary
Emergency	0001b	0x080+Node-ID	1024H,1015H
TXPDO1(transmit)	0011b	0x180+Node-ID	1800H
RXPDO1(receive)	0100b	0x200+Node-ID	1400H
TXPDO2(transmit)	0101b	0x280+Node-ID	1801H
RXPDO2(receive)	0110b	0x300+Node-ID	1401H
TXPDO3(transmit)	0111b	0x380+Node-ID	1802H
RXPDO3(receive)	1000b	0x400+Node-ID	1402H
TXPDO4(transmit)	1001b	0x480+Node-ID	1803H
RXPDO4(receive)	1010b	0x500+Node-ID	1403H
SDO(transmit)	1011b	0x580+Node-ID	1200H
SDO(receive)	1100b	0x600+Node-ID	1200H
NMT error control	1110b	0x700+Node-ID	1016H~1017H

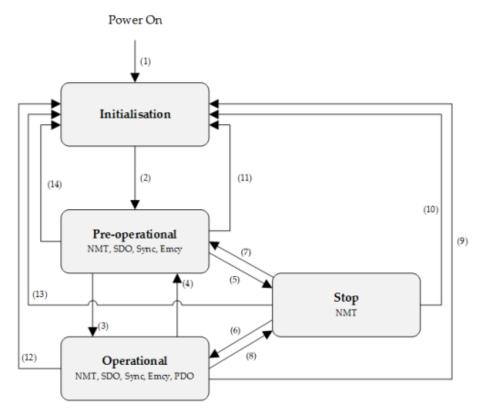
The COB-ID of No. 4 slave station TPDO2 = 0x280 + 4 = 0x284

5.2.2 CANopen objects

In the CANopen protocol, there are defined three main sets of objects, organized in profile areas:

- Communication profile area (0x1000 to 0x1FFF): These objects relate to CANopen communication, as
 defined in the DS301 communication profile. Objects in this address range are used to configure CANopen
 messages, and for general CANopen network setting.
- Manufacturer profile area (0x2000 to 0x5FFF): These objects are manufacturer specific. Detailed

information about the specific objects implemented in EMCL can be found all through this document.


• **Device profile area** (0x6000 to 0x9FFF): These objects are standardized device profile objects as defined in the DSP402 profile, which is the CANopen profile for servo drives.

This chapter is focused on the Communication profile area. DS301 defines special objects for the communication profile, responsible of managing system elements related to CANopen communications.

5.3 NMT

The network management (NMT) protocols provide services for network initialization, error control and device status control. NMT objects are used for executing NMT services. The NMT follows a master-slave structure and therefore requires that one CANopen device in the network fulfils the function of the NMT master. All other CANopen devices are regarded as NMT slaves. An NMT slave is uniquely identified in the network by its Node ID, a value in the range of 1 to 127.

The NMT state machine defines the communication status for CANopen devices.

NMT state machine

Transition	Event			
(1)	After power on the system goes directly to initialization state			
(1)	Once initialization is completed the system enters to Pre-operational state			
(3), (6)	Reception of Start remote node command			
(4), (7)	Reception of Enter pre-operational state command			
(5), (8)	Reception of Stop remote node command			
(9), (10), (11)	Reception of Reset remote node command			
(12), (13), (14)	Reception of Reset communication command			

NMT state initialization

The initialization state could be divided into three sub-states that are executed in a sequential way: Initializing (performs the basic CANopen initializations), Reset application (in where all manufacturer-specific and standardized profile area parameters are set) and Reset communication (where the communication profile and parameters are set).

At the end of initialization state the device sends a boot-up message and goes directly to Pre-Operational state.

NMT state pre-operational

In Pre-Operational state, the communication using SDO messages is possible. PDO message are not yet defined and therefore communication using these message is not allowed. The device will pass to Operational message after receiving a NMT start node command.

Normally the master puts a node in Pre-Operational state during the set-up and configuration of device parameters.

NMT state operational

In Operational state all kind of messages are active, even PDO messages.

NMT state stopped

When entering in Stopped state, the device is forced to stop all communications with the exception of the NMT commands. (Node Guarding & Life Guarding).

NMT states and communication object relation

Following table shows the relation between communication states and communication objects. Services on the listed communication objects may only be executed if the devices involved in the communication are in the appropriate communication states

5.3.1 NMT services

The structure of each NMT service command is as follows:

COP ID(how)	Number of Dytes	Data field	
COB-ID(hex) Number	Number of Bytes	Byte 0	Byte 1
0x000	2	Command specifier	Node-ID

The possible NMT services commands are the followings:

Command specifier(hex)	Command description
01	Start remote node
02	Stop remote node
80	Enter pre-operational
81	Reset node
82	Reset communication

Example of Node-ID=1 NTM services:

COB-ID(hex)	Number of Bytes	Data(hex)	Description	
000	2	80 01	NMT Host commands node 1 into Pre-Operational state	
000	2	01 01	NMT Host commands node 1 into Operational state	
000	2	02 01	NMT Host commands node 1 into Pre-Operational state	
000	2	82 01	NMT Host commands a communication reset to node 1	
701	1	00	Node 1 response with a boot-up message	

5.3.1 NMT error control

Protocol node guarding

The NMT Master can monitor the communication status of each node using the Node Guarding protocol. During node guarding, a controller is polled periodically and is expected to respond with its communication state within a pre-defined time frame. Note that responses indicating an acceptable state will alternate between two different values due to a toggle bit in the returned value. If there is no response, or an unacceptable state occurs, the NMT master could report an error to its host application.

The NMT master sends a node guarding request using the following a Remote Frame message:

COB-ID(hex)	Number of Bytes	RTR
0x700+Node-ID	0	1

The NMT slave will generate a node guarding answer using the following message:

COP ID(box)	Number of Pytes	RTR	Data field(Byte 1)		
COB-ID(hex)	Number of Bytes	KIK	Bit 7	Bit 6 to 0	
0x700+Node-ID	1	1	Toggle	NMT communication state	

Note that the slave answers toggling a bit between consecutive responses. The value of the toggle bit of the first response after the guarding protocol becomes actives is zero.

The state of the heartbeat producer could be one of the followings:

Communication State value(hex)	State definition
00	Boot-up
04	Stopped
05	Operational
7F	Pre-operational

Example of NMT Node guarding:

COB-ID(hex)	Number of Bytes	Data(hex)	Description
701	0	-	Master sends a CAN remote frame without data to node 1
701	1	7F	Node 1 sends the actual NMT state (pre-operational) toggling the 7 th bit
701	0	0	Master sends a CAN remote frame without data to node 1
701	1	FF	Node 1 sends the actual NMT state (pre-operational) toggling the 7 th bit

Protocol heartbeat

The heartbeat protocol defines an error control service without need for remote frame. A heartbeat producer (in this scope a controller) transmits a Heartbeat message cyclically. Transmit cycle of heartbeat message could be configured using the object Producer heartbeat time (0x1017). If the Heartbeat is not received by the consumer (in this scope a master) within an expected period of time (normally specified as Consumer heartbeat time) It could report an error to its host application.

The heartbeat message generated by the producer will be as follows:

COR ID(how)	Number of Britis	Data field(Byte 1)		
COB-ID(hex)	Number of Bytes	Bit 7	Bit 6 to 0	
0x700+Node-ID	1	Reserved	NMT communication state	

The state of the heartbeat producer could be one of the followings:

Communication State value(hex)	State definition
00	Boot-up
04	Stopped
05	Operational
7F	Pre-operational

Example of NMT heartbeat:

COB-ID(hex)	Number of Bytes	Data(hex)	Description			
705	1	7F Node 5 sends a heartbeat indicating pre-operational state				
705	705 1 7F After producer heartbeat		After producer heartbeat time, Node 5 sends again a			
705	1		heartbeat indicating pre-operational state			

Protocol life guarding

In Life guarding protocol the NMT slave monitors the status of the NMT master. This protocol utilizes the objects Guard time (0x100C) and Life time factor (0x100D) to determine a "Lifetime" for each NMT slave (Lifetime = Guard Time * Life Time Factor). If a node does not receive a Node Guard message within its Lifetime, the node assumes communication with the host is lost sends an emergency message and performs a fault reaction. Each node may have a different Lifetime.

Example of NMT life guarding:

COB-ID(hex)	Number of Bytes	RTR	Data(hex)	Description			
705	1	1	-	Master sends a CAN remote frame without data			
			to node 1				
705	1	1	_	Master sends a CAN remote frame without data			
703	703		_	to node 1			
•••	•••		•••	Delay Higher than Guard Time*Life Time Factor			
81	0 30 81 11		30 81 11 00	Node 1 send an EMCY indicating the lifeguard			
81	8		00 00 00 00	error			

Protocol boot-up

An NMT slave issues the Boot-up message to indicate to the NMT-Master that it has entered the state Pre-operational from state Inititalising

Example of NMT Boot-up:

COB-ID(hex)	Number of Bytes	Data(hex)	Description
705	1	00	Node 5 sends a boot-up NMT message

5.4 SDO

The SDO are communication channels with two basic characteristics:

- Client / Server relationship
- It provides access to the dictionary of CANopen objects of the device.

The SDO are used to transfer multiple object content simultaneously (each with an arbitrary amount of information) from client to server and vice versa.

SDO are transferred as a sequence of segments. Before sending the segments there is an initialization process

in which the server and clients prepare themselves to send the segments. However, it is also possible to send information (up to 4bytes) during the initialization process. This mechanism is called SDO expedited transfer. The SDO message will be as follows:

Master to Slave(Write)

COB-ID(hex)	Byte 0	Byte 1:2	Byte 3	Byte 4:7
0x600+Node-ID	SDO send Command	Object Dictionary	Index	Data

Slave to Master(Feedback)

COB-ID(hex)	Byte 0	Byte 1:2	Byte 3	Byte 4:7
0x580+Node-ID	SDO receive Command	Object Dictionary	Index	Data

Example of SDO:

• The master uses the SDO to write data to objects in the nodes

COB-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Description
Master to	Slave(Wr								
602	2B	01	18	03	F0	20	00	00	Setup into Node 2
Slave to		1081h-03=20F0(hex)							
582	60	01	18	03	00	00	00	00	

• The master uses the SDO to read data from objects in the nodes

COB-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	Description
Master to	Slave(Wr								
602	40	01	18	03	00	00	00	00	Read from Node 2
Slave to	Master(Fe	eedback)							1081h-03=20F0(hex)
582	4B	01	18	03	F0	20	00	00	

5.5 PDO

PDOs are messages send without confirmation used for real time information transfer. PDOs are mapped to a single CAN frame and can contain multiple object dictionary entries with a maximum of 8 bytes of data. Each PDO has an identifier and is transmitted by only one node in the network, however it could be received by more than one node. PDOs must be configured previous to using them.

There are two types of PDO messages: Transmit PDO (TPDO) and Receive PDO (RPDO).

The trigger event of the PDO message could be configured using the communication parameter object and the object dictionary entries transmitted could be also defined using the PDO mapping list.

Therefore, each PDO is defined by means of:

- A PDO communication parameter
- A PDO mapping object

ELD2-CAN series include 4 RPDO and 4 TPDO.

Transmit PDO (TPDO)

TPDOs are configured to send data from node to master after the occurrence of a trigger event or after a remote request by means of a RTR.

TPDOs have three transmission types:

- Internal event or timer: Message transmission is triggered when the value mapped into the PDO has changed or when the specified time (event-timer) has elapsed. PDO transmission is controlled by producer.
- Remotely request: Message transmission is initiated on receipt of a RTR message. PDO transmission is driven by the PDO consumer.
- Synchronously trigger: Message transmission is triggered by the reception of a certain number of SYNC objects (see TPDO1 definition for further information). The PDO transmission is controlled by the SYNC producer.

Example of an internal event TPDO:

COB-ID(hex)	Number of Bytes	Data(hex)	Description
182	2	63 22	Node 2 sends the Transmit PDO1 with a content value of 0x2263.

Receive PDO (RPDO)

The master uses the RPDO to write data to objects in the nodes.

RPDOs have two transmission types:

- Asynchronous: Message content is applied upon receipt of the RPDO. The PDO reception is controlled by the PDO producer.
- Synchronously trigger: Message content is applied after the reception of a certain number of SYNC objects. The PDO reception is controlled by the SYNC producer.

Example of an asynchronous RPDO:

COB-ID(hex)	Number of Bytes	Data(hex)	Description
202	2	22 12	Master sends a RPDO1 to Node 2 with a content value of
	2		0x1222.

5.6 SYNC

SYNC object is a broadcast message sent by one of the devices in the bus (normally the master) to provide synchronization to the network and to allow coordination between nodes. The nodes could be programmed to return any variable (actual position, etc) by means of TPDO at reception of SYNC object. The SYNC object has no data.

Example of SYNC:

COB-ID(hex)	Number of Bytes	Data(hex)	Description
80	0	-	Producer sends a SYNC message to all bus nodes.

5.7 EMCY

Emergency objects are triggered by the occurrence of a CANopen device internal error situation and are transmitted from an emergency producer (normally a node) on the CANopen device. An emergency object is sent only once per error event. Zero or more emergency consumers may receive the emergency object.

COB-ID(hex) Byte number:	1	2	3	4	5	6	7	8
--------------------------	---	---	---	---	---	---	---	---

80+Node ID	Emergency error codes	Error registers	Reserved
80+Noue ID	(Object 0x603F)	(Object 0x1001)	

ELD2-CAN series include Emergency error codes (Object 0x603F):

Emergency error codes	Description
0000Н	-
8110H	CAN bus over-run
8120H	CAN in error passive mode
8130H	Lifeguard error
8140H	Recovered from CAN bus off
8141H	CAN Bus off occurred
8150H	Send COB-ID conflicts
8210H	PDO not processed due to length error
8220H	PDO exceeds length error

ELD2-CAN series include Error registers (Object 0x1001):

Bit	Description
0	Generic Error
1	Current
2	Voltage
3	Temperature
4	Communication
5	Error specified by device protocol
6	Reserved
7	Leadshine specific error

Chapter 6 Trial Run

- Ground the earth terminal of the motor and drive without fail. the PE terminal of drive must be reliably connected with the grounding terminal of equipment.
- The drive power need with isolation transformer and power filter in order to guarantee the security and anti-jamming capability.
- Check the wiring to make sure correctness before power on.
- Install a emergency stop protection circuit externally, the protection can stop running immediately to prevent accident happened and the power can be cut off immediately.
- If drive alarm occurs, the cause of alarm should be excluded and Svon signal must be invalid before restarting the drive.
- Please don't touch terminal strip or separate the wiring.

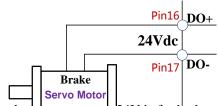
Note: there are two kinds of trial run: trial run without load and trial run with load. The user need to test the drive without load for safety first.

Contact tech@leadshine.com for more technical service.

6.1 Inspection Before trial Run

6.1.1 Inspection on wiring

Table 6.1 Inspection Item Before Run


No	Item	Content
1	Wiring Inspection	1. Ensure the following terminals are properly wired and securely connected: the input power terminals, motor output power terminal, encoder input terminal CN2, control signal terminal CN1, communication terminal CN3(it is unnecessary to connect CN1 and CN3 in Jog run mode) 2. short among power input lines and motor output lines are forbidden, and no short connected with PG ground.
2	Confirmation of power supply	The range of control power input Vdc, GND must be in the rated range (24-60Vdc).
3	3 Fixing of position the motor and drive must be firmly fixed	
4	Inspection without load	the motor shaft must not be with a mechanical load.
5	Inspection on control signal	 all of the control switch must be placed in OFF state. servo enable input Srv_on must be in OFF state.

6.1.2 Holding brake

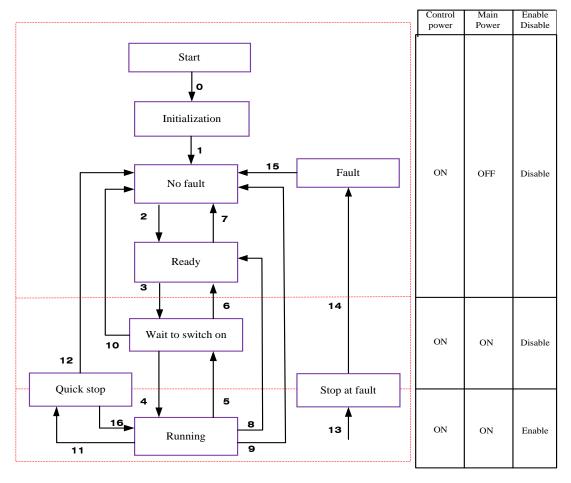
In applications where the motor drives the vertical axis, this brake would be used to hold and prevent the work (moving load) from falling gravity while the power to the servo is shut off.

✓ For ELD2-CAN7005B\ELD2-CAN7010B\ELD2-CAN7015B\ELD2-CAN7020B\ELD2-CAN7030B: Pin16/17 (DO+/DO-) can be used to release the brake of motor directly.

About the wire of brake, ther 24Vdc for weakee the brake will be released with the 24Vdcinput, and the drive provide an output signal to control the connection or disconnection of the 24Vdc, and it is forbidden to connect these signal directly for the power of 24Vdc, it will destroy the hardware of servo drive.

6.1.3 Inspection on Parameters Setting

Motor Model	Pr7.15	Pr7.16
ACM602V36-1000	0x8001	0x201
ACM602V36-2500	0x8001	0x204
57BL180D-1000	0x8003	0x201
ACM604V60-1000	0x8002	0x201
ACM604V60-2500	0x8002	0x204
ELDM6020V36HL-A5	0x8004	0x201
ACM602V36-T-2500	0x8006	0x204
ACM602V24-T-2500	0x8007	0x204
ELDM4005V24HL-B5	0x8008	0x204
ELDM4010V24HL-B5	0x8009	0x204
ELDM6020V48HL-A5	0x800B	0x201
ELDM6040V48HL-A5	0x800C	0x201
ELDM6040V60HL-A5	0x800D	0x201
ELDM6060V48HL-A5-HD	0x800E	0x201
ELDM8075V48HM-A4-HD	0x8010	0x201
ELDM6020V24GL-A5	0X8016	0x201
ELDM6020V48HL-A5	0X8017	0x201
ELDM6040V24HL-A5	0X8018	0x201


6.2 ELD2-CAN motion control procedure

- A. The CANopen master sends "control word (6040h)" to initialize the drive.
- B. Drive feedback "status word (6041h)" to the master to show ready status (status word indication).
- C. Master send enable command (control word switch).
- D. The drive enables and feeds back to the master.
- E. The master station sends homing command to return to homing position
- F. Drive returns to homing position complete and notifies master station (status word indication)
- G. The master station sends the position mode command for position movement (position motion parameters and control word) or sends the speed command for speed movement (speed motion parameters and control word).

- H. When the drive is finished executing the movement (position motion/velocity motion), ELD2-CAN feeds back the position/speed to the master station for monitoring during the motion
- I. The master station sends commands for the next motion.

6.3 CIA 402 State Machine

Figue 6.1 ELD2-CAN 402 State Machine switchover diagram

The states are described in the following stable 6.2

Table 6.2 State description

States	Details			
	Initialization of the servo drive and self-check have been done.			
Initialization	Parameter setting or drive function cannot be implemented.			
	If there is brake, the brake will not release, servo disabled.			
No fault	No fault exists in the servo drive or the fault is eliminated			
140 fauit	Parameter setting of the servo drive is allowed.			
Ready	The servo drive is ready. Parameter setting of the servo drive is allowed.			
Wait to switch on	The servo drive waits to switch on. Parameter setting of the servo drive is allowed.			
	The servo drive is in normal running state; a certain control mode is enabled;			
Running	The motor is energized, and rotates when the reference is not 0.			
C	Parameters with the setting condition of 'during running' can be set.			
Quick stop	The quick stop function is enabled, and the servo drive executes quick stop.			
	Parameters with the setting condition of 'during running' can be set.			
Stop at fault	A fault occurs, and the servo drive stops.			

	Parameters with the setting condition of 'during running' can be set.
Fault	The stop process is completed, and all the drive function are inhibited. Parameter setting is allowed for users to eliminate faults.

The conversion of CIA402 state machine is accomplished by the control word (6040h) of the ELD2-CAN servo system operated by the master station.

6.4 Common Functions for All Modes

6.4.1 Motor Rotation Direction

The Rotation Direction is defined in 607Eh.

Mode	<u>;</u>	Value	
Position mode	PP HM	0: Rotate in the same direction as the position command 128: Rotate in the opposite direction as the position command	
Velocity mode	PV	0: Rotate in the same direction as the position command64: Rotate in the opposite direction as the position command	
Torque mode	PT	0: Rotate in the same direction as the position command 32: Rotate in the opposite direction as the position command	
ALL mode		0: Rotate in the same direction as the position command 224: Rotate in the opposite direction as the position command	

6.2.2 Drive Stop

If the 6085h is not 0, the 6085h object will be used as the deceleration speed for quick stop. If the 6085h is 0, the servo will be stopped quickly according to the maximum current limit.

The emergency stop when meet limit switch, motor will stop rapidly according to the maximum current limit.

When the state machine is switched to an enable state the motor will stop freely. When bit8(Halt) of 6040h is 1, the motor will stop with deceleration set in 6084h.

6.4.3 Electronic Gear Ratio

ELD2-CAN position mode include protocol position mode (PP) and homing mode (HM), only in these two modes does the electronic gear ratio valid.

Electronic gear ratio range is 1/1000~8000, otherwise ErA00 warning will appear (the warning is not saved, after modification to a reasonable range, the operation panel alarm will automatically disappear, but the 402 state will still be in the "error" state, write 0x80 into 6040h to reset.

The electronic gear ratio setting is defined by 608Fh(Position encoder resolution),6091h(Gear ratio) and 6092h(Feed constant), which can only be effectively changed in the pre-operational state.

608Fh(Position encoder resolution) is the resolution of the encoder, which is read internally without additional setting. 6092h_01 represents the number of pulses that can be set for each rotation of the motor. 6091h_01/6091h_02 is real-time update effective.

The electronic gear subdivision method can be determined by modifying 6092h_01(Feed constant)

The subdivision method of electronic gear can be determined by modifying 6092h_01(Feed constant).

1. If 6092h_01(Feed constant) is not equal to 608Fh(Position encoder resolution), then:

Electronic gear ratio = encoder resolution / 6092h_01

2. If 6092h_01(Feed constant) is equal to 608Fh(Position encoder resolution), then:

Electronic gear ratio = 6091_01/6092h_01

Electronic gear ratio range is 1/1000~8000.

Note: when the setting value exceeds this range, the error will be reported and automatically reset to the default value. The default values of 6091_01, 6091_02 and 6092_01 are 1, 1 and 10000.

6.4.4 Control Word

The binary representation of the controlword (6040) is as follows:

Bit	15~11	10~9	8	7	6~4	3	2	1	0
Definition -			Halt	Fault	Mode	Enable	Quick	Enable	Switch
Deminion	-	1	Hall	reset	specific	operation	stop	voltage	on

		Bit7	6040	402 State			
Command	7: Fault reset	3: Enable operation	2: Quick stop	1: Enable voltage	0: Switch on	Value	machine *1)
Power off	0	×	1	1	0	0006h	2;6;8
Switch on	0	0	1	1	1	0007h	3*
Switch on	0	1	1	1	1	000Fh	3**
No voltage output	0	×	×	0	×	0000h	7;9;10;12
Quick stop	0	×	0	1	×	0002h	7;10;11
Operation disable	0	0	1	1	1	0007h	5
Operation enable	0	1	1	1	1	000Fh	4;16
Fault reset	Rising edge	×	×	×	×	0080h	15

[×] is not affected by this bit state

The definition of bit 8 and bit 6~4 in different operation modes are shown in the following table

Bit		Operation Mode					
	Profile Position (PP)	Profile Velocity (PV)	Profile Torque (PT)	Homing (HM)			
8	Halt	Halt	Halt	Halt			
6	Abs / Rel	-	-	-			
5	Change set immediately	-	-	-			
4	New set-point	-	-	Homing operation start			

^{*} indicates that this transition is performed in the device start state

^{**} indicates that it has no effect on the start state and remains in the start state

^{*1)} The state machine switch corresponds to figure 6.1

6.4.5 Status Word

Bit definition of Status Word 6041h.

The binary representation of the statusword (6041) is as follows:

Bit	Definition	
15~14	Reserved	
13~12	Mode specific	
11	Position limit active	
10	Target reached	
9	Remote	
8	Mode specific	
7	Reserved	
6	Switch on disabled	
5	Quick stop	
4	Voltage output	
3	Fault	
2	Operation enable	
1	Switch on	
0	Ready to switch on	

Bit 11 is valid when the software or hardware limit is in effect.

The combination of bit 6 and bit 0~3 represents the device state shown in following table

Combination of bit 6 and bit 3~0	Description	
××××,××××,×0××,0000	Not ready to switch on	
××××,××××,×1××,0000	Switch on disabled	
××××,××××,×01×,0001	Ready to switch on	
××××,××××,×01×,0011	Switch on	
××××,×××,×01×,0111	Operation enabled	
××××,×××,×00×,0111	Quick stop active	
××××,××××,×0××,1111	Fault reaction active	
××××,××××,×0××,1000	Fault	

 \times is not affected by this bit state

The definition of bit 8 and bit 12~13 in different operation modes are shown in the following table

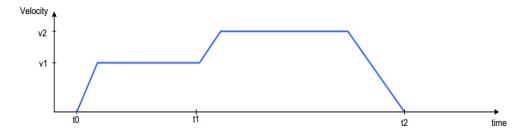
Bit	Operation Mode			
	Profile Position (PP)	Profile Velocity (PV)	Profile Torque (PT)	Homing (HM)
13	Following error	-	-	Homing error
12	-	Velocity is 0	-	Homing attained
8	Abnormal stop	-	-	Abnormal stop

6.4.6 Drive Enable

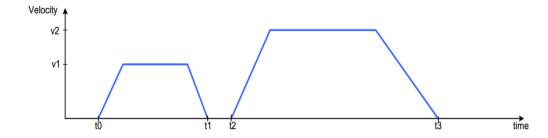
This section describes how to enable the drive by control word (6040h), how to view the drive enable states by status word (6041h)

Steps:

- 1: Write 0 to the control word 6040h
- 2: Write 6 to the control word 6040h
- 3: Write 7 to the control word 6040h
- 4: Write F to the control word 6040h


6.5 Profile position mode

When using network command source, the validation process for a new target position is the following:


- The requested target position is sent to the motion controller.
- After the new target position has been delivered to the drive, the motion controller expects a controlword with a rising edge of the "*New set point*" bit.
- Upon reception of the controlword with the rising edge of the "*New set point*" bit, the motion controller issues a statusword with a "Set point acknowledge" bit rising edge.
- To signal its ability to accept new set points, the motion controller issues a statusword with the "Set point acknowledge" bit cleared.

If the system was not processing any position, the new position is processed and the motion starts. Nevertheless, if there was a previous set point being processed. the behavior of the system depends on the "*Change set immediately*" bit in the controlword:

• If the "Change set immediately" bit of the controlword is 1, the target point is the new set point, and motion is started to reach this new set point.

• If the "Change set immediately" bit of the controlword is 0, the new set point is added to a buffer of set points, and the motion to the previous set being processed is not altered.

6.5.1 Controlword in profile position mode

The profile position mode uses some bits of the controlword and the statusword for mode specific purposes.

The binary representation of the controlword(6040) in profile position mode is as follows:

Bit	15~9	8	7	6	5	4	3	2	1	0
		Halt	Fault	Abs / rel	Change set	New	Enable	Quick	Enable	Switch
	_	пан	reset	AUS / IEI	immediately	set-point	operation	stop	voltage	on

If no positioning is in progress, the rising edge of bit 4 will start the positioning of the axis. In case a

positioning is in progress, the definitions given in the following table shall be used.

Change set immediately	New set-point	Description
0	0 1	Actual positioning will be completed (target reached) before the next one gets started (Set of set-points mode)
1	0 1	Next positioning shall be started immediately interrupting the actual one.

Next table defines the values for bit 6 and 8 of the controlword.

Name	Value	Description
Alba / nal	0	Target position is an absolute value.
Abs / rel	1	Target position is a relative value.
Halt	0	Execute positioning.
	1	Stop axis with profile deceleration(6084h).

6.5.2 Statusword in profile position mode

The binary representation of the statusword(6041) in profile position mode is as follows:

Bit	Definition
15~14	Reserved
13	Following error
12	-
11	Position limit active
10	Target reached
9	Remote
8	Abnormal stop
7	Reserved
6	Switch on disabled
5	Quick stop
4	Voltage output
3	Fault
2	Operation enable
1	Switch on
0	Ready to switch on

The meaning of each bit is described below, depending on its value:

Name	Value	Description
Target reached	0	Halt=0: Target position not reached Halt=1: Axis decelerates
	1	Halt=0: Target position reached

		Halt=1: Axis has velocity 0
Following error	0	No following error
	0	Following error

6.5.3 Related objects

Object Dictionary	Description	Setup value	Units
6060H	Mode of operation	1	
6040H	Controlword		
6041H	Statusword		
607AH	Target position		Pulse
6081H	Profile velocity		Pulse /s
6083H	Profile acceleration		Pulse /s ²
6084H	Profile deceleration		Pulse /s ²
6092H	Feed constant		

6.5.4 Example of profile position mode

No	Command	Function
		Reset all nodes. If you need to reset the specified node, the node
1	81 00 00 00 00 00 00 00	number is changed by modifying the two digits after 81 (note that it
		is hexadecimal)
		Start remote control for all nodes. If remote control of the specified
2	01 00 00 00 00 00 00	node needs to be started, the node number is changed by modifying
		the two-digit number after 01 (note that it is hexadecimal).
3	2b <mark>40 60</mark> 00 06 00 00 00	Write control word as 06H, state machine switching status
3	20 40 00 00 00 00 00	Switch On Disabled->Ready to Switch On
		Read control word as 07H, state machine switching status
4	2b 40 60 00 07 00 00 00	Ready to Switch On-> Switched On
		The relay in the actuator is engaged
5	2b <mark>40 60</mark> 00 0f 00 00 00	Write control word as 0fH, state machine switching status
<i>J</i>	25 40 00 00 01 00 00 00	Switched On->Operation Enable. Servo-Enabled
6	2f 60 60 00 01 00 00 00	Write operation mode as 1H, profile position mode
7	23 <mark>81 60</mark> 00 90 D0 03 00	Write the protocol speed as 3D090H(1500rpm, 10000p/r)
8	23 <mark>83 60</mark> 00 90 D0 03 00	Write the protocol acceleration as 3D090H(1500rpm/s, 10000p/r)
9	23 <mark>7a 60</mark> 00 20 4E 00 00	Write the target location at 4E20H (2 rotations, 10000p/r)
10	2b <mark>40 60</mark> 00 4f 00 00 00	Write the control word as 4fH,
10	20 40 60 00 41 00 00 00	Set to relative motion mode
11	2b 40 60 00 5f 00 00 00	Write the control word as 5fH. Execute positioning
12	2b <mark>40 60</mark> 00 07 00 00 00	Write control word as 07H,state machine switching status
12	20 40 00 00 07 00 00 00	Operation Enable -> Switched On. Servo-Disabled
13	2b 40 60 00 06 00 00 00	Write control word as 06H,state machine switching status
13	20 40 00 00 00 00 00	Switched On ->Ready to Switch On

Notes: The COB-ID of step 1 (reset node) and step 2 (start node) is "0x000", and the COB-ID of the remaining

steps is the address 0x600 + Node ID

6.6 Profile velocity mode

Target velocity obtained from the command source is processed immediately on reception (system limits, etc.), and is delivered to the profiler afterwards. According to the predetermined parameters, the profiler generates and provides the control unit with the instantaneous target torque to be achieved. Upon reaching the target, a statusword is issued as a notification to other nodes.

6.6.1 Controlword in profile velocity mode

The profile velocity mode uses some bits of the controlword and the statusword for mode specific purposes.

The binary representation of the controlword (6040) in profile velocity mode is as follows:

Bit	15~9	8	7	6	5	4	3	2	1	0
		Halt	Fault				Enable	Quick	Enable	Switch
	_	Han	reset	-	-	-	operation	stop	voltage	on

The action taken is described below, depending on the value of each bit:

Name	Value	Description			
TT-14	0	Execute velocity movement			
Halt	1	Stop the movement			

6.6.2 Statusword in profile velocity mode

The binary representation of the statusword(6041) in profile velocity mode is as follows:

Bit	Definition
15~14	-
13	-
12	Velocity is 0
11	-
10	Target reached
9	-
8	-
7	-
6	Switch on disabled
5	Quick stop
4	Voltage output
3	Fault
2	Operation enable
1	Switch on
0	Ready to switch on

The meaning of each bit is described below, depending on its value:

Name	Value	Description
Target	0	Halt=0: Target velocity not reached Halt=1: Axis decelerates
reached	1	Halt=0: Target velocity reached

		Halt=1: Axis has velocity 0
Valacity is 0	0	Velocity is not equal 0
Velocity is 0	0	Velocity is equal 0

6.6.3 Related objects

Object Dictionary	Description	Setup value	Units
6060H	Mode of operation	3	
6040H	Controlword		
6041H	Statusword		
60FFH	Target velocity		Pulse /s
6083H	Profile acceleration		Pulse /s ²
6084H	Profile deceleration		Pulse /s ²
606CH	Velocity actual value		Pulse /s
606BH	Velocity demand value		Pulse /s

6.6.4 Example of profile velocity mode

No	Command	Function
1	81 00 00 00 00 00 00 00	Reset all nodes. If you need to reset the specified node, the node number is changed by modifying the two digits after 81 (note that
		it is hexadecimal)
2	01 00 00 00 00 00 00	Start remote control for all nodes. If remote control of the specified node needs to be started, the node number is changed by modifying the two-digit number after 01 (note that it is hexadecimal).
3	2b 40 60 00 06 00 00 00	Write control word as 06H, state machine switching status
		Switch On Disabled->Ready to Switch On Read control word as 07H, state machine switching status
4	2b 40 60 00 07 00 00 00	Ready to Switch On-> Switched On The relay in the actuator is engaged at this point
		Write control word as 0fH, state machine switching status
5	2b 40 60 00 0f 00 00 00	Switched On->Operation Enable. Servo-Enabled
6	2f <mark>60 60</mark> 00 03 00 00 00	Write operation mode as 3H, profile velocity mode
7	23 <mark>83 60</mark> 00 90D0 03 00	Write the protocol acceleration as 3D090H(1500rpm/s, 10000p/r)
8	23 ff 60 00 90 D0 03 00	Write the protocol speed as 3D090H(1500rpm, 10000p/r)
9	2b 40 60 00 07 00 00 00	Write control word as 07H,state machine switching status Operation Enable -> Switched On. Servo-Disabled
10	2b 40 60 00 06 00 00 00	Write control word as 06H,state machine switching status Switched On ->Ready to Switch On

Notes: The COB-ID of step 1 (reset node) and step 2 (start node) is "0x000", and the COB-ID of the remaining steps is the address 0x600 + Node ID

6.7 Profile torque mode

Target torque obtained from the command source is processed immediately on reception (system limits, etc.), and is delivered to the profiler afterwards. According to the predetermined parameters, the profiler generates and provides the control unit with the instantaneous target torque to be achieved. Upon reaching the target, a statusword is issued as a notification to other nodes.

6.7.1 Controlword in profile torque mode

The profile velocity mode uses some bits of the controlword and the statusword for mode specific purposes. The binary representation of the controlword(6040) in profile torque mode is as follows:

Bit	15~9	8	7	6	5	4	3	2	1	0
Definition	_	Halt	Fault	_		_	Enable	Quick	Enable	Switch
Deminion	•	rian	reset	•	-	-	operation	stop	voltage	on

The action taken is described below, depending on the value of each bit:

Name	Value	Description
I I a 14	0	Execute torque movement
Halt	1	Stop the movement

6.7.2 Statusword in profile torque mode

The binary representation of the statusword(6041) in profile torque mode is as follows:

Bit	Definition
15~14	-
13	-
12	-
11	-
10	Target reached
9	-
8	-
7	-
6	Switch on disabled
5	Quick stop
4	Voltage output
3	Fault
2	Operation enable
1	Switch on
0	Ready to switch on

The meaning of each bit is described below, depending on its value:

Name	Value	Description			
Target	0	Halt = 0: Target torque not reached Halt = 1: Axis decelerates			
reached	1	Halt = 0: Target torque reached			

	Halt = 1: Axis has velocity 0

6.7.3 Related objects

Object Dictionary	Description	Setup value	Units
6060H	Mode of operation	4	
6040H	Controlword		
6041H	Statusword		
6071H	Target torque		0.1%
6087H	Torque change rate		0.1%/s
6080H	Maximum motor speed		r/min
6074H	Torque demand		0.1%
6077H	Torque actual value		0.1%

6.7.4 Example of profile torque mode

No	Command	Function
1	81 00 00 00 00 00 00 00	Reset all nodes. If you need to reset the specified node, the node number is changed by modifying the two digits after 81 (note that
		it is hexadecimal)
		Start remote control for all nodes. If remote control of the
2	01 00 00 00 00 00 00 00	specified node needs to be started, the node number is changed by
2	01 00 00 00 00 00 00	modifying the two-digit number after 01 (note that it is
		hexadecimal).
3	2b 40 60 00 06 00 00 00	Write control word as 06H, state machine switching status
	25 40 00 00 00 00 00	Switch On Disabled->Ready to Switch On
		Read control word as 07H, state machine switching status
4	2b <mark>40 60</mark> 00 07 00 00 00	Ready to Switch On-> Switched On
		The relay in the actuator is engaged at this point
5	2b 40 60 00 0f 00 00 00	Write control word as 0fH, state machine switching status
	25 40 00 00 01 00 00 00	Switched On->Operation Enable. Servo-Enabled
6	2f 60 60 00 04 00 00 00	Write operation mode as 4H, profile torque mode
7	23 71 60 00 14 00 00 00	Write the torque value as 14H (20*0.1%=1% rated torque)
8	2b 74 20 00 e8 03 00 00	Write the speed limit (Pr3.21) as 3e8H (1000 RPM)
9	23 87 60 00 14 00 00 00	Write the rate of change in torque as 14H (That is, increases to
9	23 87 00 00 14 00 00 00	20*0.1% of the rated torque =2% /s)
10	2b 40 60 00 07 00 00 00	Write control word as 07H,state machine switching status
10	20 40 00 00 07 00 00 00	Operation Enable -> Switched On. Servo-Disabled
11	2b 40 60 00 06 00 00 00	Write control word as 06H,state machine switching status
11	25 70 00 00 00 00 00	Switched On ->Ready to Switch On

Notes: The COB-ID of step 1 (reset node) and step 2 (start node) is "0x000", and the COB-ID of the remaining steps is the address 0x600 + Node ID

6.8 Homing mode

Typically, in a homing method there are two homing speeds: the faster speed is used to find the mechanical limit, and the slower speed is used to find the index pulse. There is a compromise between search speed and homing precision, due to maximum axis deceleration and inertia.

6.8.1 Controlword in profile homing mode

The profile velocity mode uses some bits of the controlword and the statusword for mode specific purposes. The binary representation of the controlword(6040) in profile homing mode is as follows:

Bit	15~9	8	7	6	5	4	3	2	1	0
	-	Halt	Fault reset	-	-	Homing operation start	Enable operation	Quick stop	Enable voltage	Switch

The action taken is described below, depending on the value of each bit:

Name	Value	Description				
Homing	0	Do not start homing procedure				
operation start	1	Start homing procedure				
II alt	0	Execute the instruction of bit 4				
Halt	1	Stop axis with homing acceleration				

6.8.2 Statusword in profile homing mode

The binary representation of the statusword(6041) in profile homing mode is as follows:

Bit	Definition
15~14	-
13	Homing error
12	Homing attained
11	-
10	Target reached
9	-
8	Abnormal stop
7	-
6	Switch on disabled
5	Quick stop
4	Voltage output
3	Fault
2	Operation enable
1	Switch on
0	Ready to switch on

The meaning of each bit is described below, depending on its value:

Homing error	Homing attained	Target reached	Description
0	0	0	Homing procedure is in progress
0	0	1	Homing procedure is interrupted or not started
0	1	0	Homing is attained but target is not reached
0	1	1	Homing mode carried out successfully
1	0	0	Homing error occurred; Homing mode carried out not successfully; Velocity is not zero
1	0	1	Homing error occurred; Homing mode carried out not successfully; Velocity is zero
1	1	X	Reserved

6.8.3 Related objects

Object Dictionary	Description	Setup value	Units
6060H	Mode of operation	-	
6040H	Controlword		
6041H	Statusword		
6098H	Homing method		
6099H	Homing speeds		Command unit /s
609AH	Homing acceleration		Command unit /s ²
607CH	Home offset		Command unit

6.8.4 Example of homing mode

No	Command	Function
		Reset all nodes. If you need to reset the specified node, the node
1	81 00 00 00 00 00 00 00	number is changed by modifying the two digits after 81 (note that it
		is hexadecimal)
		Start remote control for all nodes. If remote control of the specified
2	01 00 00 00 00 00 00 00	node needs to be started, the node number is changed by modifying
		the two-digit number after 01 (note that it is hexadecimal).
3	2h 40 60 00 06 00 00 00	Write control word as 06H, state machine switching status
3	2b 40 60 00 06 00 00 00	Switch On Disabled->Ready to Switch On
		Read control word as 07H, state machine switching status
4	2b <mark>40 60</mark> 00 07 00 00 00	Ready to Switch On-> Switched On
		The relay in the actuator is engaged at this point
_	2h 40 60 00 0f 00 00	Write control word as 0fH, state machine switching status
5	2b 40 60 00 0f 00 00 00	Switched On->Operation Enable. Servo-Enabled

Low speed of homing 6099h-02h

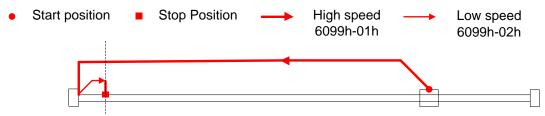
6	2f 60 60 00 06 00 00 00	Write operation mode as 6H, homing mode
7	23 <mark>99 60</mark> 01 30 75 00 00	Write home speed-high speed as 7530H (180rpm, 10000p/r)
8	23 <mark>99 60</mark> 02 20 4e 00 00	Write home speed-low speed as 4e20H (120rpm, 10000p/r)
9	23 <mark>9a 60</mark> 00 30 75 00 00	Write the acceleration of home speed as 7530H (180rpm/s,10000p/r)
10	2f <mark>98 60</mark> 00 16 00 00 00	Write home method as 16H (The 22rd home method)
11	2b <mark>40 60</mark> 00 1f 00 00 00	Write the control word as 1f, set the 4th digit of 6040H as 1, start
11	20 40 00 00 11 00 00 00	homing mode.
12	2b 40 60 00 0f 00 00 00	Write the control word as 0f, and set the 4th digit of 6040H as 0, do
12	20 40 60 00 01 00 00 00	not start homing mode.
14	2b 40 60 00 07 00 00 00	Write control word as 07H,state machine switching status
14	20 40 60 00 07 00 00 00	Operation Enable -> Switched On. Servo-Disabled.
15	2b 40 60 00 06 00 00 00	Write control word as 06H,state machine switching status
13	20 40 00 00 00 00 00	Switched On ->Ready to Switch On.

Notes: The COB-ID of step 1 (reset node) and step 2 (start node) is "0x000", and the COB-ID of the remaining steps is the address 0x600 + Node ID

6.8.5 Homing Method

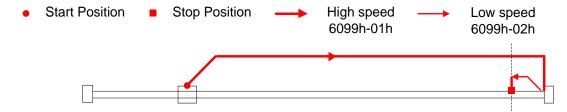
Start Position

Method -6: Search the homing point with low speed negative direction, when the torque reached then stop immediately.

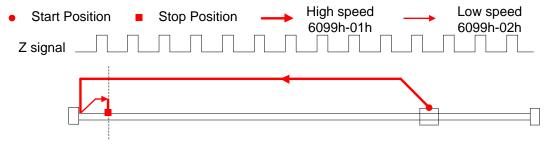


Method -5: Search the homing point with low speed positive direction, when the torque reached then stop immediately.

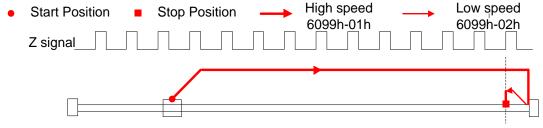
Stop Position



Method -4: Search the homing point with low speed negative direction, when the torque reached then change the motion direction, when the torque is gone then stop immediately.

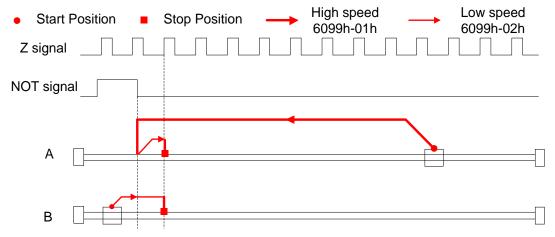


Method -3: Search the homing point with low speed positive direction, when the torque reached then change the motion direction, when the torque is gone then stop immediately.



Method -2: Search the homing point with low speed negative direction, when the torque reached then reverse the direction, when the torque is gone and Z signal coming then stop immediately.

Method -1: Search the homing point with low speed positive direction, when the torque reached then reverse the direction, when the torque is gone and Z signal coming then stop immediately.

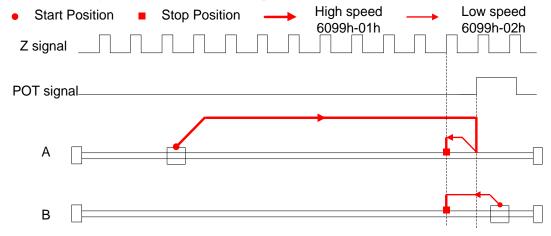


Method 1:

If the negative limit switch is invalid, the motor will move in negative direction at high speed until the negative limit switch signal is valid. The motor stops and starts moving at low speed in positive direction. The motor stops after leaving the negative limit switch and the first encoder Z signal is valid, as shown in figure.

If the motor stops at the negative limit position when it starts to move, the motor will move in positive direction at low speed. The motor stops after leaving the negative limit switch and the first encoder Z signal is valid, as shown in figure.

If the positive limit signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating that the homing error and the motor will stop immediately.

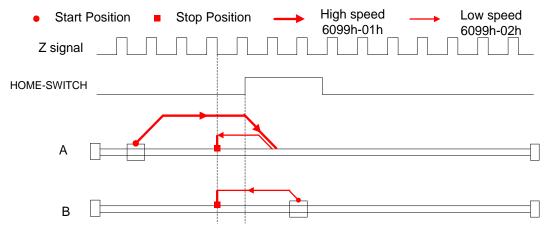


Method 2:

If the positive limit switch is invalid, the motor will move in positive direction at high speed until the positive limit switch signal is valid. The motor stops and starts moving at low speed in negative direction. The motor stops after leaving the positive limit switch and the first encoder Z signal is valid, as shown in figure.

If the motor stops at the positive limit position when it starts to move, the motor will move in negative direction at low speed. The motor stops after leaving the positive limit switch and the first encoder Z signal is valid, as shown in figure.

If the negative limit signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating that the homing error and the motor will stop immediately.

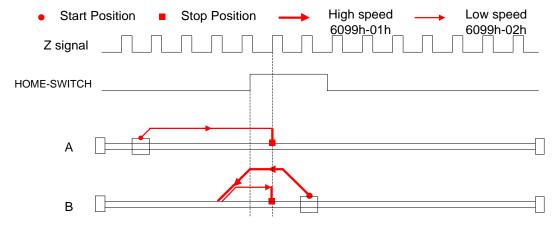


Method 3:

If the homing switch is invalid, the motor will move in positive direction at high speed until the homing switch signal is valid. The motor stops and starts moving at low speed in negative direction. The motor stops after leaving the homing switch and the first encoder Z signal is valid, as shown in figure.

If the motor stops at the homing switch position when it starts to move, the motor will move in negative direction at low speed. The motor stops after leaving the homing switch and the first encoder Z signal is valid, as shown in figure.

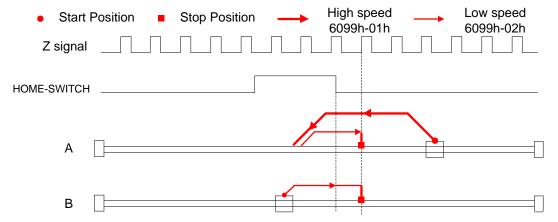
If the positive/negative limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating that the homing error and the motor will stop immediately.


Method 4:

If the homing switch is invalid, the motor will move in positive direction at low speed until the homing switch signal is valid. The motor stops after leaving the homing switch and the first encoder Z signal is valid, as shown in figure.

If the motor stops at the homing switch position when it starts to move, the motor will move in negative direction at high speed until the homing switch invalid. Then the motor reverse the direction at low speed. The motor stops after the homing switch valid and the first encoder Z signal is valid, as shown in figure.

If the positive/negative limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating that the homing error and the motor will stop immediately.



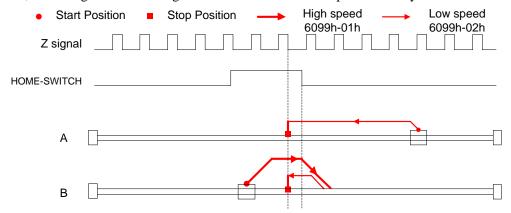
Method 5:

If the homing switch is invalid, the motor will move in negative direction at high speed until the homing switch signal is valid. Then the motor reverse the direction at low speed. The motor stops after leaving the homing switch and the first encoder Z signal is valid, as shown in figure.

If the motor stops at the homing switch position when it starts to move, the motor will move in positive direction at low speed. The motor stops after the homing switch invalid and the first encoder Z signal is valid, as shown in figure.

If the positive/negative limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating that the homing error and the motor will stop immediately.

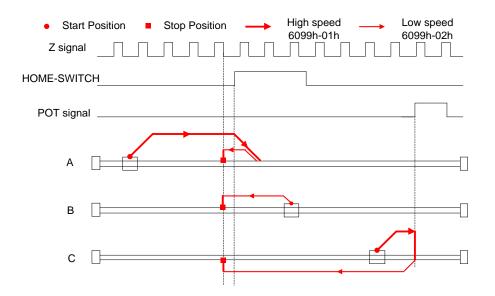
Method 6:


If the homing switch is invalid, the motor will move in negative direction at low speed until the homing switch signal is valid. The motor stops after leaving the homing switch and the first encoder Z signal is valid, as shown in figure.

If the motor stops at the homing switch position when it starts to move, the motor will move in positive direction at high speed until the homing switch invalid. Then the motor reverse the direction at low speed. The motor stops after the homing switch valid and the first encoder Z signal is valid, as shown in figure.

If the positive/negative limit switch signal is valid during the homing process, the status word (6041h) bit

13 will be valid, indicating that the homing error and the motor will stop immediately.


Method 7:

If the homing switch and positive limit switch is invalid, the motor will move in positive direction at high speed until the homing switch signal is valid. Then the motor reverse the direction at low speed. The motor stops after leaving the homing switch and the first encoder Z signal is valid, as shown in figure.

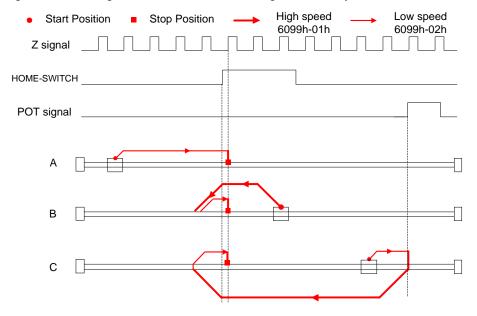
If the positive limit switch is invalid and motor stops at the homing switch position when it starts to move, the motor will move in negative direction at low speed until the homing switch signal is valid. The motor stops after leaving the homing switch and the first encoder Z signal is valid, as shown in figure.

If the homing switch and positive limit switch is invalid, the motor will move in positive direction at high speed until the positive limit switch valid. Then the motor reverse the direction at low speed. The motor stops after the homing switch valid and the first encoder Z signal is valid, as shown in figure.

If the negative limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating that the homing error and the motor will stop immediately.

Method 8:

If the homing switch and positive limit switch is invalid, the motor will move in positive direction at low speed. The motor stops after the homing switch valid and the first encoder Z signal is valid, as shown in figure.

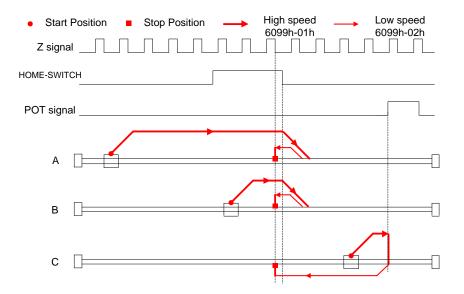

If the positive limit switch is invalid and motor stops at the homing switch position when it starts to move, the motor will move in negative direction at high speed until the homing switch signal is invalid. Then the motor reverse the direction at low speed. The motor stops after the homing switch valid and the first encoder Z

signal is valid, as shown in figure.

If the homing switch and positive limit switch is invalid, the motor will move in positive direction at low speed until the positive limit switch valid. Then the motor reverse the direction at high speed until the homing switch invalid. Then the motor move in positive direction at low speed. The motor stops after the homing switch valid and the first encoder Z signal is valid, as shown in figure.

If the negative limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating that the homing error and the motor will stop immediately.

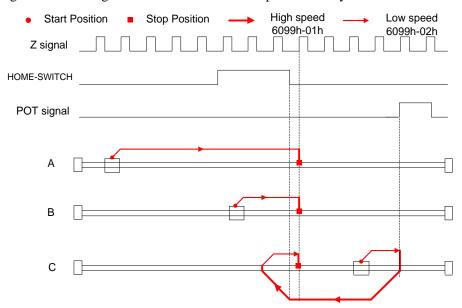
Method 9:


If the homing switch and positive limit switch is invalid, the motor will move in positive direction at high speed until the homing switch invalid. Then the motor reverse the direction at low speed. The motor stops after the homing switch valid and the first encoder Z signal is valid, as shown in figure.

If the positive limit switch is invalid and motor stops at the homing switch position when it starts to move, the motor will move in positive direction at high speed until the homing switch signal is invalid. Then the motor reverse the direction at low speed. The motor stops after the homing switch valid and the first encoder Z signal is valid, as shown in figure.

If the homing switch and positive limit switch is invalid, the motor will move in positive direction at high speed until the positive limit switch valid. Then the motor reverse the direction at low speed. The motor stops after the homing switch valid and the first encoder Z signal is valid, as shown in figure.

If the negative limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating that the homing error and the motor will stop immediately.

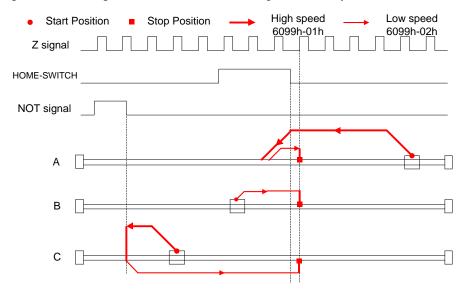

Method 10:

If the homing switch and positive limit switch is invalid, the motor will move in positive direction at low speed. The motor stops after the homing switch invalid and the first encoder Z signal is valid, as shown in figure.

If the positive limit switch is invalid and motor stops at the homing switch position when it starts to move, the motor will move in positive direction at low speed. The motor stops after the homing switch invalid and the first encoder Z signal is valid, as shown in figure.

If the homing switch and positive limit switch is invalid, the motor will move in positive direction at low speed until the positive limit switch valid. Then the motor reverse the direction at high speed until the homing switch valid. Then the motor move in positive direction at low speed. The motor stops after the homing switch invalid and the first encoder Z signal is valid, as shown in figure.

If the negative limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating that the homing error and the motor will stop immediately.


Method 11

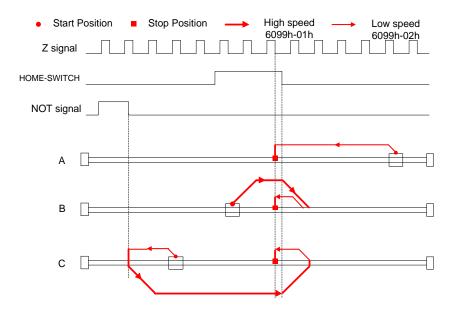
If the homing switch and negative limit switch is invalid, the motor will move in negative direction at high speed until the homing switch signal is valid. Then the motor reverse the direction at low speed. The motor stops after leaving the homing switch and the first encoder Z signal is valid, as shown in figure.

If the negative limit switch is invalid and motor stops at the homing switch position when it starts to move, the motor will move in positive direction at low speed. The motor stops after leaving the homing switch and the first encoder Z signal is valid, as shown in figure.

If the homing switch and positive limit switch is invalid, the motor will move in negative direction at high speed until the negative limit switch valid. Then the motor reverse the direction at low speed. The motor stops after the homing switch invalid and the first encoder Z signal is valid, as shown in figure.

If the positive limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating that the homing error and the motor will stop immediately.

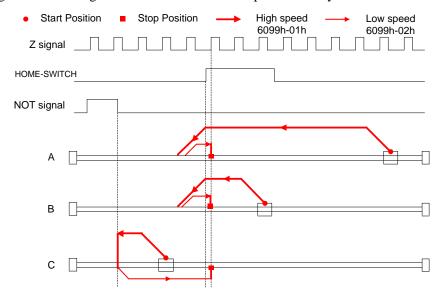
Method 12:


If the homing switch and positive limit switch is invalid, the motor will move in negative direction at low speed. The motor stops after the homing switch valid and the first encoder Z signal is valid, as shown in figure.

If the negative limit switch is invalid and motor stops at the homing switch position when it starts to move, the motor will move in positive direction at high speed until the homing switch signal is invalid. Then the motor reverse the direction at low speed. The motor stops after the homing switch valid and the first encoder Z signal is valid, as shown in figure.

If the homing switch and negative limit switch is invalid, the motor will move in negative direction at low speed until the positive limit switch valid. Then the motor reverse the direction at high speed until the homing switch invalid. Then the motor move in negative direction at low speed. The motor stops after the homing switch valid and the first encoder Z signal is valid, as shown in figure.

If the positive limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating that the homing error and the motor will stop immediately.

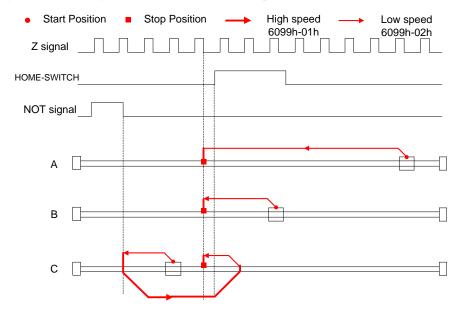

Method 13:

If the homing switch and negative limit switch is invalid, the motor will move in negative direction at high speed until the homing switch invalid. Then the motor reverse the direction at low speed. The motor stops after the homing switch valid and the first encoder Z signal is valid, as shown in figure.

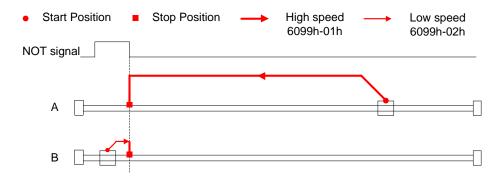
If the negative limit switch is invalid and motor stops at the homing switch position when it starts to move, the motor will move in negative direction at high speed until the homing switch signal is invalid. Then the motor reverse the direction at low speed. The motor stops after the homing switch valid and the first encoder Z signal is valid, as shown in figure.

If the homing switch and positive limit switch is invalid, the motor will move in negative direction at high speed until the negative limit switch valid. Then the motor reverse the direction at low speed. The motor stops after the homing switch valid and the first encoder Z signal is valid, as shown in figure.

If the positive limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating that the homing error and the motor will stop immediately.

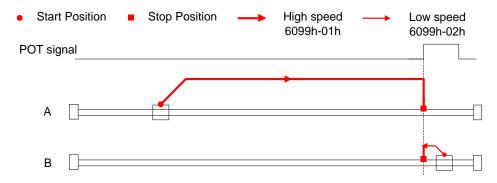

Method 14:

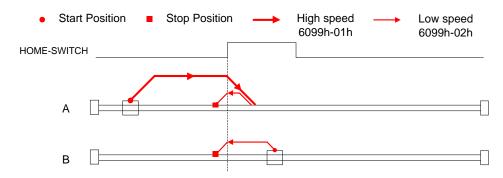
If the homing switch and positive limit switch is invalid, the motor will move in negative direction at low speed. The motor stops after the homing switch invalid and the first encoder Z signal is valid, as shown in figure.


If the negative limit switch is invalid and motor stops at the homing switch position when it starts to move, the motor will move in negative direction at low speed. The motor stops after the homing switch invalid and the first encoder Z signal is valid, as shown in figure.

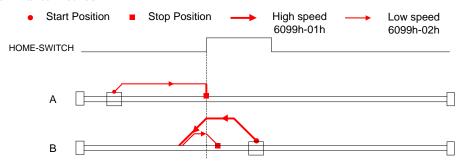
If the homing switch and positive limit switch is invalid, the motor will move in negative direction at low speed until the negative limit switch valid. Then the motor reverse the direction at high speed until the homing switch valid. Then the motor move in negative direction at low speed. The motor stops after the homing switch invalid and the first encoder Z signal is valid, as shown in figure.

If the positive limit switch signal is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating that the homing error and the motor will stop immediately.

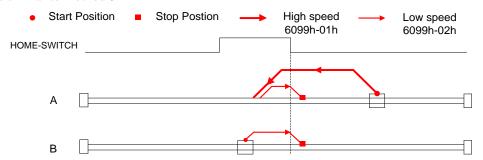

Method 17:This method is similar to method 1


Method 18:

This method is similar to method 2

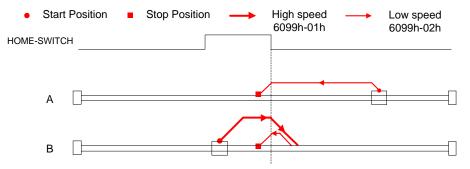

Method 19:

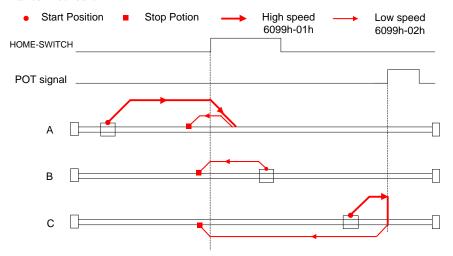
This method is similar to method 3



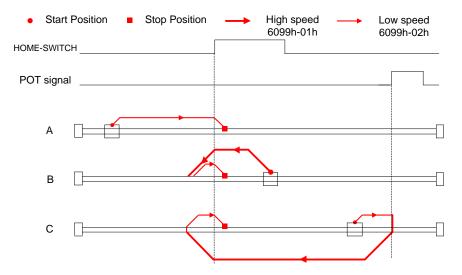
Method 20:

This method is similar to method 4


Method 21:


Method 22:

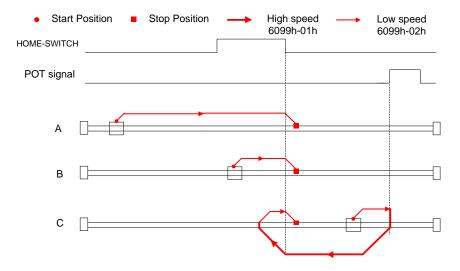
This method is similar to method 6



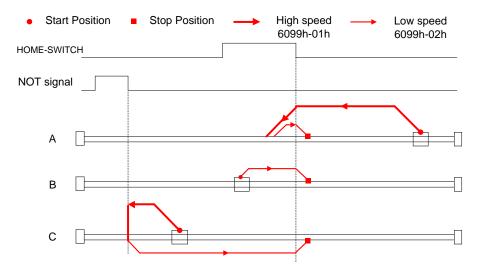
Method 23:

This method is similar to method 7

Method 24:

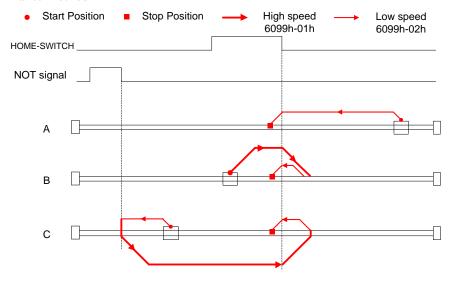

Method 25:

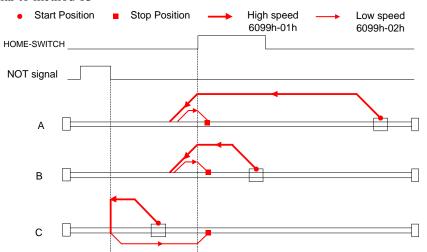
This method is similar to method 9



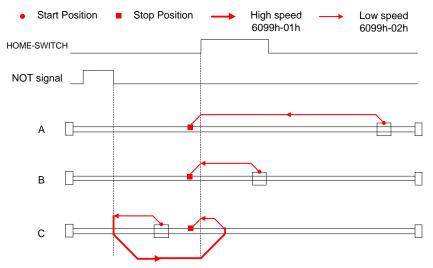
Method 26:

This method is similar to method 10


Method 27:


Method 28:

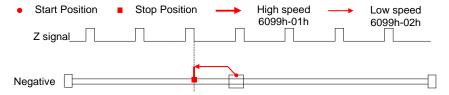
This method is similar to method 12



Method 29:

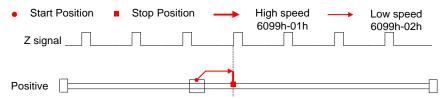
This method is similar to method 13

Method 30:



Method 33:

The motor starts to move in a negative direction and stops when the Z signal is valid.


If the positive/negative limit switch signal and homing switch is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating that the homing error and the motor will stop immediately.

Method 34:

The motor starts to move in a positive direction and stops when the Z signal is valid.

If the positive/negative limit switch signal and homing switch is valid during the homing process, the status word (6041h) bit 13 will be valid, indicating that the homing error and the motor will stop immediately.

Method 35/37:

Set the current position as homing point.

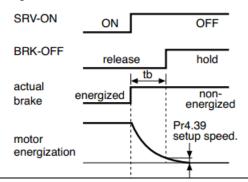
When using this method, the motor does not need to be enabled, only the control word (6041h) needs to be executed from 0 to 1.

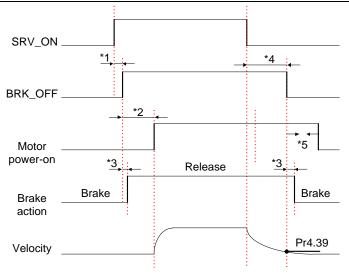
Control word 6040h bit4: 0->1

6.9 Security Features

6.9.1 BRK-OFF output

This function can be configured by set digital DO output functions allocation. refer to IO Pr4.10 parameter description. When the enable and time meet the set conditions, the digital output IO port can output ON.


	Name	Mechanical brake a			Mode	,,,,,,	Juipe		9 9 3 2 0 0 0	in outp		1	F
Pr4.37	Range	0~10000	Unit	1ms	Default		0		Index			2437h	l
	Motor bral Set up the signal(BR) de-energize while the r		"galloping "phenomen SRV-ON ON BRK-OFF release					OFF					
	 Set up to prevent a micro-travel/drop of the motor (work) due to the action delay time(tb) of the brake. After setting up Pr4.37>=tb, then compose the sequence so as the drive turns to servo-off after the brake is 						ual bra or orgizati		release			hold non- energize	ed


	actual	actually activated.										
Pr4.38	Name	Mechanical brake a setup	Mechanical brake action at running setup								F	
	Range	0~10000	Unit	1ms	Default	0	Index		1	2438h		

Mechanical brake start delay time setup, mainly used to prevent servo off "galloping "phenomenon. Set up time from when detecting the off of servo-on input signal(SRV-ON)is to when external brake release signal(BRK-OFF)turns off, while the motor turns to servo off during the motor in motion.

- Set up to prevent the brake deterioration due to the motor running.
- At servo-OFF during the motor is running, the of the right fig will be a shorter one of either Pr4.38 setup time, or time lapse till the motor speed falls below Pr4.39 setup speed.

D 4 20	Name	Brake release speed	l setup		Mode						F
Pr4.39	Range	30~3000	Unit	1ms	Default	30	Ir	ndex		2439h	
	Set up the s	peed timing of brake	output ch	ecking during	operation .						

Notice:

- *1: The delay time between SRV_ON and BRK_OFF is less than 500ms;
- *2: Time setting in Pr4.38;
- *3: The delay time between the BRK_OFF signal output and the actual brake release action, which depends on the hardware characteristics of the motor brake;
- *4: The smaller value of Pr4.37 and Pr4.39;

6.9.2 Servo stop mode

D # 06	Name	Stop	mode			Mode					F	
Pr5.06	Range	0~1		Unit	_	Default	0	Index		250	6h	
Specify the status during deceleration and after stop, after servo-off.												
	Setup va	lue		Details								
	0		Disabled when d	disable signal effective and speed reduce to Pr4.39								
	1		Disabled when d	lisable sig	gnal effec	ctive, free-run to	stop					

6.9.3 Emergency stop function

Pr5.11	Name	Torque setup for e	Mode						F			
PF5.11	Range	0~500	Unit	%	Default	0		Index		25111	h	
	Set up the torque limit at emergency stop When setup value is 0, the torque limit for normal operation is applied.											
	•	with the maximum	•				smalle	er one.				

6.10 Inertia ratio identification

Pr0.04	Name	Inertia ratio			Mode							\mathbf{F}				
Prv.04	Range	0~10000	Unit	%	Default	250	250		250		250		Index		2004h	ı
You can set up the ratio of the load inertia against the rotor(of the motor)inertia.																
	Pr0.04=(load inertia/rotate inertia)×100%															
	Notice:															
	If the inertia	ratio is correc	etly set, th	e setup i	unit of Pr1.01 and	Pr1.0	6 beco	mes ((Hz). V	When th	e inerti	a ratio				
	of Pr0.04 is	larger than the	actual va	lue, the	setup unit of the v	elocit	y loop	gain	becon	nes large	er, and	when				
	the inertia ra	atio of Pr0.04 i	is smaller	than the	actual value, the	setup	unit of	the v	elocit	y loop g	ain bec	comes				
	smaller.															

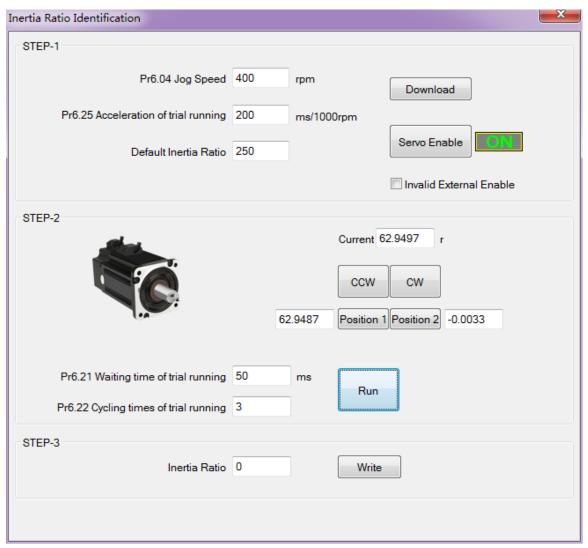
6.10.1 On-line inertia ratio identification

The motor is operated by the controller, and the motor speed is above 400rmp. The running stroke has obvious acceleration, uniform speed and deceleration process, and the load inertia ratio can be tested by running 2-3 times continuously. The inertia ratio of the test is viewed in *Drive Operating Data Monitor-> d16Jr*. Set the monitor value minus 100 into Pr0.04..

6.10.2 Motion Studio inertia ratio identification

This inertia ratio identification function also added in Motion Studio configuration software.

Pre-conditions: 1. Servo disable. 2. Positive limit and negative limit invalid **Stone:**


Steps:

Set the Jog speed Pr6.04, and the setting should not be too large(600~1000rpm is recommend)
 Set the Acc Pr6.25(50~100 ms/1000rpm is recommend)
 Set the Default Inertia Ratio.

Download these settings, then **Servo Enable**.

2. Click "CCW" to make motor run to CCW direction, click "Position 1" to save the position limit 1 Click "CW" to make motor run to CW direction, click "Position 2" to save the position limit 2 Click "Run" to start Inertia ratio identification.

3, After finishing, Click "Write" to save the Inertia ratio identification result.

6.11 Vibration Suppression

Specific resonance frequency can be obtained from PC configuration software according to waveform monitoring, and filter frequency can be set to effectively suppress the oscillation ripple of a certain frequency in the current instruction.

The width of the notch is the ratio of the frequency of the notch center at a depth of 0 to the frequency range width of the attenuation rate of -3db.

The depth of the trap is: when the set value is 0, the input of the center frequency is completely disconnected; When the set value is 100, it represents the ratio of input and output that are completely passed

How to use:

- 1. Set Pr2.00=1
- 2. Decrease Pr0.03 to get higher stiffness, higher position loop gain and velocity loop gain. Decrease Pr0.03 gradually, while abnormal sound or oscillation occurred, decrease the current value by 2.
- 3. Execute movement by controller or Motion Studio, drive will record notch frequency automatically.
- 4. Upload the drive parameters, the record notch frequency saved in Pr2.07. Read the value of Pr2.07, and set this value into Pr2.01. Then reset Pr2.07 to 2000.
- 5. Saving parameters setting.

D • 00	Name	Adaptive filte	r mode set	Mode					F	
Pr2.00	Range	0~4	Unit	-	Default	0	Index		2200h	

Set up the resonance frequency to be estimated by the adaptive filter and the special the operation after estimation.

Setup value		Content
0	Adaptive filter: invalid	Parameters related to the 3rd and 4th notch filter hold the current value.
1	Adaptive filter,1 filter is valid, one time	One adaptive filter is valid, parameters related to the 3rd notch filter will be updated based on adaptive performance. After updated, Pr2.00 returns to 0, stop self-adaptation.
2	Adaptive filter, 1 filter is valid, It will be valid all the time	One adaptive filter is valid, parameters related to the 3rd notch filter will be updated all the time based on adaptive performance.
3-4	Not use	Non-professional forbidden to use

D • 04	Name	1st notch freq	uency		Mode					F
Pr2.01	Range	50~2000	Unit	Hz	Default	2000	Index		2201h	

Set the center frequency of the 1st notch filter

Notice: the notch filter function will be invalidated by setting up this parameter to "2000".

D 0 00	Name	1st notch widt	th selection	1	Mode					F
Pr2.02	Range	0~20	Unit	-	Default	2	Index		2202h	

Set the width of notch at the center frequency of the 1st notch filter.

Notice: Higher the setup, larger the notch width you can obtain. Use with default setup in normal operation.

	Name	1st notch dep	th selection	1	Mode					F
Pr2.03	Range	0~99	Unit	-	Default	0	Index		2203h	

Set the depth of notch at the center frequency of the 1st notch filter.

Notice: Higher the setup, shallower the notch depth and smaller the phase delay you can obtain.

D 0 0 4	Name	2nd notch free	quency		Mode							F
Pr2.04	Range 50~2000 Unit Hz Default 2000 Index 2204h											
Set the center frequency of the 2nd notch filter Notice: the notch filter function will be invalidated by setting up this parameter to "2000".												

T 4 0 T	Name	2nd notch wic	lth selection	n	Mode					F
Pr2.05	Range	0~20	Unit	-	Default	2	Index		2205h	

Set the width of notch at the center frequency of the 2nd notch filter.

Notice: Higher the setup, larger the notch width you can obtain. Use with default setup in normal operation.

D • 0 <	Name	2nd notch dep	th selection	on	Mode					F
Pr2.06	Range	0~99	Unit	-	Default	0	Index		2206h	

Set the depth of notch at the center frequency of the 2nd notch filter.

Notice: Higher the setup, shallower the notch depth and smaller the phase delay you can obtain.

6.12 Friction torque compensation

Pr6.07	Name	Torque command value	addition	al	Mode				F
	Range	-100~100	Unit	%	Default	0	Index	2607h	
Pr6.08	Name	Positive direction compensation val	•		Mode				F
	Range	-100~100	Unit	%	Default	0	Index	2608h	
Pr6.09	Name	Negative direction torque compensation value			Mode				F
	Range	-100~100	Unit	%	Default	0	Index	2609h	

These three parameters may apply feed forward torque superposition directly to torque command.

6.13 Regenerative resister setting

When the torque of the motor is opposite to the direction of rotation (such as deceleration, z-axis falling down, etc.), energy will feedback to the drive. At this time, the energy feedback received by the capacitor in the drive, which makes the voltage of the capacitor rise. When it rises to a certain voltage value, the excess energy needs to be consumed by the regenerative resistance.

Pr0.16	Name	External regene value	rative res	sistance	Mode						F
	Range	40~500	Unit	Ohm	Default	100	In	ıdex	2	2016h	

Set Pr.0.16 and Pr.0.17 to confirm the threshold value of the discharge loop to give alarm for over current.

Range 20~5000 Unit W Default 20 Index 2017h	Pr0.17	Name	External reger power value	nerative re	sistance	Mode					F
		Range	20~5000	Unit	W	Default	20	Index		2017h	

Set Pr.0.16 and Pr.0.17 to confirm the threshold value of the discharge loop to give alarm for over current.

	D = 21	Name	Regenerativ	e resistance control mo	de setting	3	Mode	P	•	S	Т
	Pr7.31	Range	0~2		Unit		Default	0)		
ĺ		_						•			
			Setup value		Details						
			0	Disable regenerative	resistance	e discharge					
			1	Enable reactive pump	lift supp	ression fund	ction				

	2	Enable regenerative resistance discharge	
Notice:			

D # 22	Name	Regenerative resistance open threshold	Mode	P	S	T		
Pr7.32	Range	20~90	V	Default	80			
The external resistance is activated when the actual bus voltage is higher than Pr7.32 plus Pr7.33 and is								
deactivated	deactivated when the actual bus voltage is lower than Pr7.32 minus Pr7.33							
Notice:	Notice:							

D7 22	Name	Regenerative resistance control hyster	Mode	P	S	T		
Pr7.33	Range	1~50	Default	5				
The extern	The external resistance is activated when the actual bus voltage is higher than Pr7.32 plus Pr7.33 and is							
deactivated	deactivated when the actual bus voltage is lower than Pr7.32 minus Pr7.33							
Notice:	Notice:							

6.14 Multi-turn absolute encoder

The absolute encoder remember position, When the absolute encoder is used for the first time, user need to move to the home position, and clear the absolute position value of multiple turns through the drive to set the home position. It is unnecessary to return to home position in the future (except for the absolute encoder alarm and other situations). It is recommended that the motor is stationary when reading the position to prevent dynamic data jump.

6.14.1 Parameters setting

Dr.0.15	Name	Absolute Enc	oder Setup	١	Mode	PP		HM		
FTU.15	Range	0~15	Unit	-	Default	0	Index	ζ	2015h	

0: Incremental position mode:

The encoder is used as a incremental encoder, and the position retentive at power failure is not supported.

1: Absolute position linear mode:

The encoder is used as an absolute encoder, and the position retentive at power failure is supported.. It is applicable to the scenario where the travel range of device load is fixed and the encoder multi-turn data dose not overflow.

2: Absolute position rotation mode:

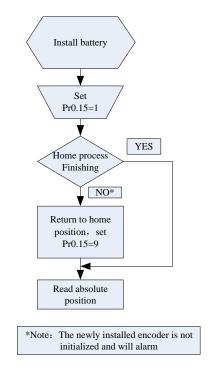
The encoder is used as an absolute encoder, and the position retentive at power failure is supported. It is mainly applicable to the scenario where the load travel range is not limited and the number of motor single-direction revolution is less than $0\sim(Pr6.63+1)$

5: Clean multi-turn alarm, and open multi-turn absolute function.

It will become 1 when normal clearance, if it's still 5 after 3 seconds, please deal with according to 153 alarm processing.

9: Clear multi-turn position and reset multi-turn alarm, open multi-turn absolute function.

It will become 1 when normal clearance, if it's still 9 after 3seconds, please deal with according to 153 alarm processing. Please remember to do mechanical homing.


Notes: Set to 9 after homing process finished and servo disabled, valid after restart power-supply

Pr6.63	Name	upper limit of multi - turn absolute position			Mode							F
	Range	0~32766	Unit	r	Default	0		Index			2663h	
	While Pr0.15=2, the feedback position will loop between 0 - (Pr6.63+1)*Encoder resolution											

6.14.2 Read absolute position

1. Steps:

- (1) Firstly, select the multi-turns absolute encoder motor, install the battery, and confirm whether the drive version supports multi-turns absolute encoder motor;
- (2) Set Pr0.15=1 to open absolute encoder. If it is the first time of installation, the drive will alarm Err153. The reason is that the multi-turn position is invalid due to the newly installed battery of the motor. At this time, it is necessary to return to the home position of the machine and perform the multi-turn position reset operation (see multi-turn position reset).
 - (3) When the absolute value origin is set and there is no battery fault, the alarm will be cancelled
 - (4) Finally, the user can read the absolute position, even if the power off the position will not lost.

2. Read absolute position

The absolute encoder counting mode is that when the motor rotates clockwise, the number of turns is defined as negative, while motor rotates counterclockwise the number of turns is defined as positive. The maximum rotation number is -32768 to +32767. After the number of turns is out of range, if the number of turns is 32767 counterclockwise, it will reverse to -32768, -32767...; If the number of turns clockwise -32768, it will reverse to 32767, 32766...

Absolute encoder read mode: read 6064h data object

3. Clear absolute position

Before clear absolute position, the machine needs to return to the home point. After clear absolute position, the absolute position =0, the single-turn position remains unchanged, and the absolute value of the

encoder is cleared to alarm

Set Pr0.15=9: multi-turn zero clearing and reset multi-turn alarm, open multi-turn absolute function. It will become 1 when normal clearance, if it's still 9 after 3 seconds, please deal with according to 153 alarm processing. Please remember to do mechanical homing.

6.14.3 Alarm

1. Introductions

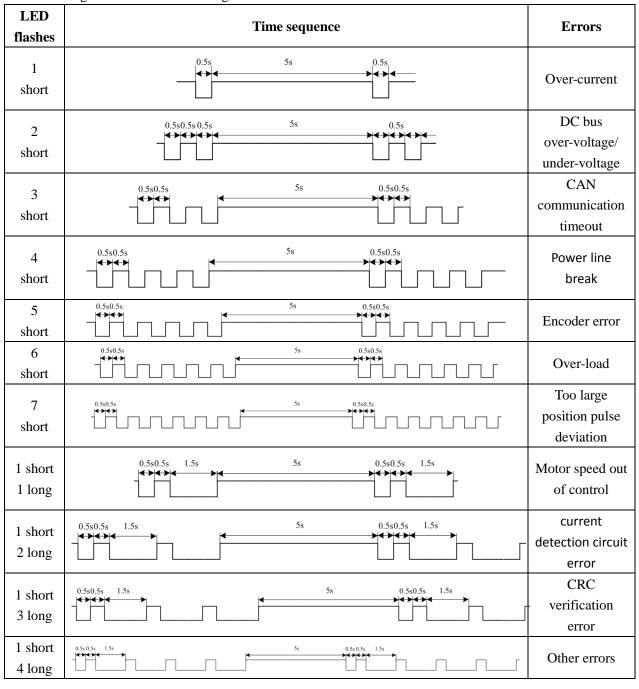
The multi-turns absolute encoder alarm function can determine whether the absolute encoder is valid or not, such as battery under voltage or power failure, encoder fault, etc., users can judge the absolute encoder alarm through bus alarm output, IO alarm output, and drive operation panel alarm. At this time, the controller should stop operation immediately, and the absolute motion operation can only be carried out after the alarm is eliminated

2. Alarm output

Absolute encoder alarm can be displayed by the panel Err153, IO output alarm signal, or read alarm information by communication

- 3. The drive sends an absolute encoder alarm Err153, the main situation is as follows:
- (1) When the absolute encoder is used for the first time, absolute encoder alarm will be generated due to the new battery of the motor. At this time, it is necessary to return to the home point and perform multi-turn zero clearing operation
- (2) When the battery under voltage is lower than 3.2v, absolute encoder alarm will be generated by the drive. At this time, the alarm will be automatically eliminated after the battery is recharged by replacing the battery
- (3) When the battery voltage is lower than 2.5v, or the battery has a power failure, the absolute encoder alarm will be generated. Even if the battery is replaced, the alarm cannot be eliminated. At this time, the return to the home point and multi-turn zero clearing operation should be performed

4. Alarm processing flow chart



Chapter 7 Alarm and Processing

7.1 Alarm List

If an error has occurred, the red power LED will flash in a 5s cycle. When the fault is cleared the red power LED is always off.

The following table shows the meaning of the error numbers.

The configuration software MotionStudio will automatically display the error code in alarm display window. The history of the error can be also viewed on alarm window from the configuration software.

Table 7.1 Error Code List

603F(hex) Error code	1001(hex) Error register	Configuration software	Content	
2211	2	0E0	Over-current	
2212	2	0E1	Over-current of intelligent power module (IPM)	
3150	4	0A0	Current detection circuit error	
3151	4	0A1	Current detection circuit error	
3153	4	0A3	Power line (U, V, W) break	
3201	4	0A5	DC bus circuit error	
3211	4	0C0	DC bus over-voltage	
3221	4	0D0	DC bus under-voltage	
4210	8	0F0	Drive over-heat	
5530	80	240	CRC verification error when EEPROM parameter saved	
5531	80	241	I ² C Communication status error	
5532	80	242	Read/write history alarm error	
5533	80	243	Read/write diagnostic data error	
5534	80	244	Read/write bus communication parameters error	
5535	80	245	Read/write 402 parameters error	
6321	80	210	input interface allocation error	
6322	80	211	input interface function set error	
6323	80	212	output interface function set error	
6329	80	090	FPGA communication error	
7122	80	5F0	Motor code error	
7321	80	150	Encoder wiring error	
7322	80	151	Encoder data error	
7323	80	152	Encoder initial position error	
7324	80	170	Encoder data error	
7329	80	260	Positive/negative limit input active	
7701	80	120	Brake resistor discharged circuit overload	

7702	80	121	Brake resistor error
8110	10	901	CAN bus over-run
8120	10	902	CAN in error passive mode
8130	10	903	Lifeguard error
8140	10	904	Recovered from CAN bus off.
8141	10	905	CAN Bus off occurred.
8150	10	906	ID error
8310	2	101	Motor over-load
8311	2	100	Drive over-load
8305	2	105	Torque saturation alarm
8401	20	190	Vibration is too large
8402	20	1A0	Over-speed 1
8403	20	1A1	Motor speed out of control
8503	20	1B1	Electronic gear ratio error
8611	20	180	Too large position pulse deviation
8610	20	181	Too large velocity deviation
8612	20	1B0	Position pulse input frequency error

7.2 Alarm Processing Method

When error occurred, please clear error reason, restart the power supply.

Error	Main	Extra	Display: "Display: "Displa			
code	89	8~8				
Cause			Confirmation	Solution		
Vdc/GND under-voltage		voltage	Check the voltage of Vdc/GND terminal	Make sure voltage of Vdc/GND in proper range		
Drive internal fault		ılt	/	replace the drive with a new one		

Error	Main	Extra	Display: Content: current detection circuit error				
code	OA.	□~Ⅱ					
Cause			Confirmation	Solution			
_		tor output	Č i	Make sure motor U,V,W terminal wiring			
U,V,W te	erminal		U,V,W terminal	correctly			
Vdc/GND under-voltage			Check the voltage of	Make sure voltage of Vdc/GND in			
			Vdc/GND terminal	proper range			
Drive inn	ner fault		/	replace the drive with a new one			

Error	Main	Extra	Display: "				
code	OR OR	8~8	Content: analog input circuit error				
Cause			Confirmation	Solution			
Analog input Wiring error			Check wiring of analog input Make sure analog input wiring corre				
Drive inner fault			/	replace the drive with a new one			

Error	Main	Extra	Display: " = = = = = = = = = = = = = = = = = =				
code	98	3	Content: Power line break				
Cause			Confirmation	Solution			
Power lin	Power line break		Check wiring of analog input	Use a multimeter to measure the			
				resistance between the winding wires. If			
				the three-phase resistance is inconsistent,			
				the winding may be open or the motor			
				may be damaged			
Drive in	ner fault	·	/	replace the motor with a new one			

Error	Main	Extra	Display: "			
code	OA	8	Content: DC bus circuit error			
Cause			Confirmation	Solution		
Vdc/GND under-voltage		oltage	Check the voltage of Vdc/GND terminal	Make sure voltage of Vdc/GND in proper range		
Drive in	ner fault		/	replace the drive with a new one		

Error	Main	Extra	Display: "EBBBB"			
code	OR	8	Content: temperature detection circuit error			
Cause	Cause Confirmation		Confirmation	Solution		
Vdc/GND under-voltage		voltage	Check the voltage of Vdc/GND terminal	Make sure voltage of Vdc/GND in proper range		
Drive inner fault /			/	replace the drive with a new one		

Error	Main	Extra	Display: " BBB "	
code	88	8	Content: control power under-voltage	
Cause	Cause Confirmation		Confirmation	Solution
Vdc/GND under-voltage		voltage	Check the voltage of Vdc/GND terminal	Make sure voltage of Vdc/GND in proper range
Drive in	ner fault		/	replace the drive with a new one

Error	Main	Extra	Display: " Content: DC bus over-voltage	
code	88	8		
Cause	Cause		Confirmation	Solution
Vdc/GN	D over-v	oltage	Check the voltage of Vdc/GND	Make sure voltage of Vdc/GND in
	_		terminal	proper range
Inner brake circuit		it	/	replace the drive with a new one
damaged				
Drive in	ner fault		/	replace the drive with a new one

Error	Main	Extra	Display: "	
code	88	8	Content: DC bus under-voltage	
Cause			Confirmation	Solution
Vdc/GND under-voltage		oltage	Check the voltage of Vdc/GND terminal	Make sure voltage of Vdc/GND in proper range
Drive inner fault			/	replace the drive with a new one

Error	Main	Extra	Display: " = = = = = "		
code	88	8	Content: over-current		
Cause			Confirmation	Solution	
Short of drive output wire			Short of drive output wire, whether short circuit to PG ground or not circuit, assure motor no damage		
Abnormal wiring of motor			Check motor wiring order Adjust motor wiring sequence		
Short of IGBT module			Cut off drive output wiring, make srv_on available and drive motor, check whether over-current exists	replace the drive with a new one	
abnormal setting of control parameter			Modify the parameter Adjust parameter to proper range		
abnormal setting of control command			Check control command whether command changes too violently or not	Adjust control command: open filter function	

Error	Main	Extra	Display: "EBBEB"		
code	88	В	Content: IPM over-current		
Cause			Confirmation	Solution	
Short of drive output wire		ut wire	Short of drive output wire, whether short circuit to PG ground or not	Assure drive output wire no short circuit, assure motor no damage	
Abnorma	Abnormal wiring of motor		Check motor wiring order	Adjust motor wiring sequence	

Short of IGBT module	Cut off drive output wiring, make srv_on available and drive motor, check whether over-current exists or not	replace the drive with a new one
Short of IGBT module	/	replace the drive with a new one
abnormal setting of control parameter	Modify the parameter	Adjust parameter to proper range
abnormal setting of control command	Check control command whether command changes too violently or not	Adjust control command: open filter function

Error	Main	Extra	Display: "BBBBB"	
code			Content: drive over-heat	
Cause			Confirmation	Solution
the temperature of power module have exceeded upper limit			Check drive radiator whether the temperature is too high or not	Strengthen cooling conditions, promote the capacity of drive and motor, enlarge acceleration/deceleration time, reduce load

Frror	Error Main Ext		a	Display: "Electrical "		
code	88		Content: motor over-load			
Cause			Co	nfirmation	Solution	
Load is too	Load is too heavy			eck actual load if the value of rameter exceed maximum or not	Decrease load, adjust limit parameter	
Oscillation	Oscillation of machine			eck the machine if oscillation sts or not	Modify the parameter of control loop; enlarge acceleration/deceleration time	
wiring error of motor		Check wiring if error occurs or not, if line breaks or not		Adjust wiring or replace encoder/motor for a new one		
electromag engaged	gnetic br	ake	Ch	eck brake terminal voltage	Cut off brake	

Error	Main	Extra	Display: "Content: Motor overload/drive overload	
code	80	+		
Cause		Confir	rmation Solution	
Power connection	I I VW connection error		connection error	Check connection of UVW
Over current Over current		urrent	Use another drive with higher rated power	

Error	Main	Extra	Display: "		
code	88		Content: Resistance discharge circuit over-load		
Cause			Confirmation Solution		
Regenerati	ive energ	gy has	Check the speed if it is too	lower motor rotational speed; decrease load	
exceeded t	exceeded the capacity of		high. Check the load if it is inertia, increase external regenerative resistor		
regenerative resistor.		or.	too large or not. improve the capacity of the drive and motor		
Resistance	dischar	ge	/	Increase external regenerative resistor, replace	
circuit dan	nage			the drive with a new one	

Error	Main	Extra	Display: "	
code	88	-	Content: Leakage triode malfunction	
Cause			Confirmation	Solution
Brake circuit failure			Brake resistance short circuit	repair
			IGBT damaged	repair

Error		Extra	Display: "	
code	8	Content: encoder line breaked		
Cause	Cause		Confirmation	Solution
Encoder lin	Encoder line disconnected		check wiring if it steady or not	Make encoder wiring steady
Encoder wiring error			Check encoder wiring if it is correct or not	Reconnect encoder wiring
Encoder damaged			/ replace the motor with a new o	
Encoder n damaged	neasurin	g circuit	/	replace the drive with a new one

Error	Main	Extra	Display: " "	
code	8	7	Content: Encoder communication error	or
Cause			Confirmation	Solution
Encoder communication error			Interference is caused by noise	

Frror	Error Main Extr		tra	Display: " = = = = = = "		
code	89	8		Content: initialized position of encoder error		
Cause		Con		irmation	Solution	
Communication data abnormal		ıta	DC5V and si check	k encoder power voltage if it is $V \pm 5\%$ or not; check encoder cable hielded line if it is damaged or not; a encoder cable whether it is wined with other power wire or not	Ensure power voltage of encoder normally, ensure encoder cable and shielded line well with FG ground, ensure encoder cable separated with other power wire	
Encoder damaged		/		replace the motor with a new one		
Encoder circuit da	measuring maged	5	/		replace the drive with a new one	

Error	Main	Extra	Display: "	
code	88		Content: encoder data error	
Cause	Cause		firmation	Solution
Communication data abnormal		and s	k encoder power voltage if it is V ± 5% or not; check encoder cable hielded line if it is damaged or not; cencoder cable whether it is wined with other power wire or not	Ensure power voltage of encoder normally, ensure encoder cable and shielded line well with FG ground, ensure encoder cable separated with other power wire

Encoder damaged	/	replace the motor with a new one
Encoder measuring circuit damaged	/	replace the drive with a new one

Error	Main	Extra	Display: "ERRER"				
code	88		Content: position error over-large error				
Cause			Confirmation	Solution			
Unreason			Check parameter Pr_014 value if it is too small or not	Enlarge the value of Pr_014			
Gain set	is too sn	nall	Check parameter Pr_100, Pr_105 value if it is too small or not	Enlarge the value of Pr_100, Pr_105			
Torque 1	imit is to	o small	Check parameter Pr_013, Pr_522 value whether too small or not	Enlarge the value of Pr_103, Pr_522			
Outside	load is to	oo large	Check acceleration/ deceleration time if it is too small or not, check motor rotational speed if it is too big or not; check load if it is too large or not	Increase acceleration/ deceleration time decrease speed, decrease load			

Error	Main	Extra	Di	Display: "Content: velocity error over-large error		
code	88	8	Co			
Cause	Cause			Confirmation	Solution	
The deviation of inner position command velocity is too large with actual speed				Check the value of Pr_602 if it is too small or not	Enlarge the value of Pr_602, or set the value to 0, make position deviation over-large detection invalid	
The acceleration/ decelerate time Inner position command velocity is too small				Check the value of Pr_312, Pr_313 if it is too small or not	Enlarge the value of Pr_312, Pr_313. adjust gain of velocity control, improve trace performance.	

Error	Main	Extra	Display: " E E E E E E E E	
code	89	8	Content: excessive vibration	
Cause			Confirmation	Solution
Current vibration			Current vibration Cut down the value of Pr003. Pr004	
Stiffness is too strong			Stiffness is too strong	

Error	Main	Extra	Display: " BBBBB "		
code			Content: over-speed 1		
Cause		Confir	mation Solution		
Motor spece exceeded t speed limit (Pr_321)	he first	check to is too is too so division if it is p	speed command if it is too large or not; the voltage of analog speed command if it targe or not; check the value of Pr_321 if it mall or not; check input frequency and in frequency coefficient of command pulse proper or not; check encoder if the wiring ect or not	Adjust the value of input speed command, enlarge the value Pr_321 value, modify command pulse input frequency and division frequency coefficient, assure encoder wiring correctly	

Error	Main	Extra	Display: " Display: "

code	BB	+	Content: Motor speed out of control	
Cause		Confir	rmation Solution	
UVW com	UVW connection		connection error	
error				
Encoder error		Encoder error		Replace motor
Special fur	nction			Set Pr1.37=4

Error	Main	Extra	Display: " Display: "	
code		8	Content: Wrong pulse input frequency	
Cause		Confir	mation	Solution
Wrong pulse input frequency				

Error	Main	Extra	Display: "	
code	Bb	+	Content: Electronic gear ratio error	
Cause		Confir	mation	Solution
Pulse input frequency is too high		Pulse in	nput frequency is too high	Make sure the pulse frequency is blew 500K

Error	Main	Extra Display: " BBBBB"		
code	88	8	Content: I/F input interface allocation error	
Cause			Confirmation	Solution
The input with two o			Check the value of Pr_400, Pr_401, Pr_402,Pr_403,Pr_404 if it is proper or not	Assure the value of Pr_400, Pr_401, Pr_402, Pr_403, Pr_404 set correctly
The input signal aren't assigned with any functions.			Check the value of Pr_400, Pr_401,Pr_402,Pr_403,Pr_404 if it is proper or not	Assure parameter Pr_400, Pr_401, Pr_402,Pr_403,Pr_404 set correctly

Error	Main	Extra	Display: "BBBBBB"		
code	28	В	Content: I/F input interface function set error		
Cause			Confirmation	Solution	
Signal allocation error			Check the value of Pr_400, Pr_401, Pr_402,Pr_403,Pr_404 if it is proper or not Assure the value of Pr_400, Pr_402, Pr_403, Pr_404 set cornect		

Error Main Extra Display: " Displ						
code	88	8	Co	Content: I/F input interface function set error		
Cause				Confirmation	Solution	
The input signal are assigned with two or more functions.				Check the value of Pr_410, Pr_411, Pr_412, Pr_413, if it is proper or not	Assure the value of Pr_410, Pr_411, Pr_412,Pr_413 set correctly	

The input signal aren't	Check the value of Pr_410,	Assure the value of Pr_410,
assigned with any functions.	Pr_411, Pr_412, Pr_413, if it is	Pr_411,Pr_412,Pr_413 set
assigned with any functions.	proper or not	correctly

Error	Main	Extra	Display: " = = = = = "		
code	29	8	Content: CRC verification error when EEPROM parameter is saved		
Cause			Confirmation	Solution	
Vdc/GND under-voltage			Check the voltage of Vdc/GND terminal	Make sure voltage of Vdc/GND in proper range	
Drive is damaged			save the parameters for several times	replace the drive with a new one	
The setting of drive maybe default setting which isn't suitable for motor.			Check the setting of drive if it is suitable for your motor Download the suitable project drive for motor		

Error	Main	Extra	Display	Display: " BBB BBB "		
code	28	8	Content: positive negative over-travel input valid			
Cause				Confirmation	Solution	
positive /negative over-travelling input signal has been conducted				Check the state of positive negative over-travel input signal	/	

Error	Main	Extra	Display: " Francisco de la Contraction de la Con	
code	87	8	Content: Analog value 1 input error limit	
Cause Confi		Confir	mation	Solution
Analog value 1 input error limit		Analog	value 1 input error limit	

Error	Main	Extra	Display: "	
code	88	8	Content: forced alarm input valid	
Cause			Confirmation	Solution
Forced-alarm input signal has been conducted		_	Check forced-alarm input signal Assure input signal wiring correctly	

Error	Main	Extra	Display: " BBBBB"	
code	SE	8	Content: Motor code error	
Cause		Confir	mation	Solution
Motor code error		Motor	code error	Set Pr7.15 correctly

Chapter 8 Product Accessory

Contact tech@leadshine.com if you need more technical service.

8.1 Accessory selection

1. Power cable (1.2m, 2.2m, 3m, 5m, 7m, 10m selectable)

CABLE-ACM3M0 (motor with -SS connector)

CABLE-PL3M0-H (motor with –HD connector)

2. Encoder cable (1.2m, 2.2m, 3m, 5m, 7m, 10m selectable)

CABLE-LD2-BM3M0 (for motor with 1000lines and 2500lines encoder)

CABLE-LD2-BM5M0-S (for motor with 5000lines, 17bit, 23bit encoder)

3. Brake cable (1.2m, 2.2m, 3m, 5m, 7m, 10m selectable) CABLE-SC3M0-S

4. Software configuration cable

CABLE-PC-1

5. CAN communication cable

CABLE-TX1M0-LD2

6. **Regenerative resistance**(for application with big ACC and DEC)

 $10\Omega\pm5\%$, 100W RXFB-1, Part num Code : 10100469 $5\Omega\pm5\%$, 200W RXLG, Part num Code : 10100522

Contact us

China Headquarters

Address: 11/F, Block A3, iPark, No.1001 Xueyuan Blvd, Nanshan District, Shenzhen

Technical Support

Tel: 86-755-2641-8447

86-755-2641-8774 (for Asia, Australia, Africa areas)

86-755-2665-5136 (for America areas)

86-755-8654-2465 (for Europe areas)

Fax: 86-755-2640-2718

Email: tech@leadshine.com (for All)

Sales

Tel: 86-755-2641-7674 (for Asia, Australia, Africa areas)

86-755-2640-9254 (for Europe areas) 86-755-2641-7617 (for America areas)

Email: sales@leadshine.com