

Report No.: EED32O813035 Page 1 of 31

EMC TEST REPORT

Product : Integrated Servo Motor

Trade mark :

Neadshine

Model/Type reference: iSV2-CAN8075V48H,iSV2-RS8075V48H,

iSV2-CAN8075V48G, iSV2-RS8075V48G iSV2-CAN8675V48H,iSV2-RS8675V48H, iSV2-CAN8675V48G, iSV2-RS8675V48G iSV2-***8075V48***, iSV2-***8675V48***; "*"

values are 0 to 9 and A to Z characters

Serial Number : N/A

Ratings : DC 24-70V

Report Number : EED32O813035 Date of Issue : Mar. 07, 2023

Regulations : See below

Test Standards	Results
⊠ EN IEC 61000-6-2:2019	PASS
⊠ EN IEC 61000-6-4:2019	PASS

Prepared for:

China Leadshine Technology Co., Ltd. 15-20/F, Block B, Nanshan I Valley, No.3157, Shahe West Road, Nanshan District, Shenzhen

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Wifi. Lei

Reviewed by:

Deng Binbin

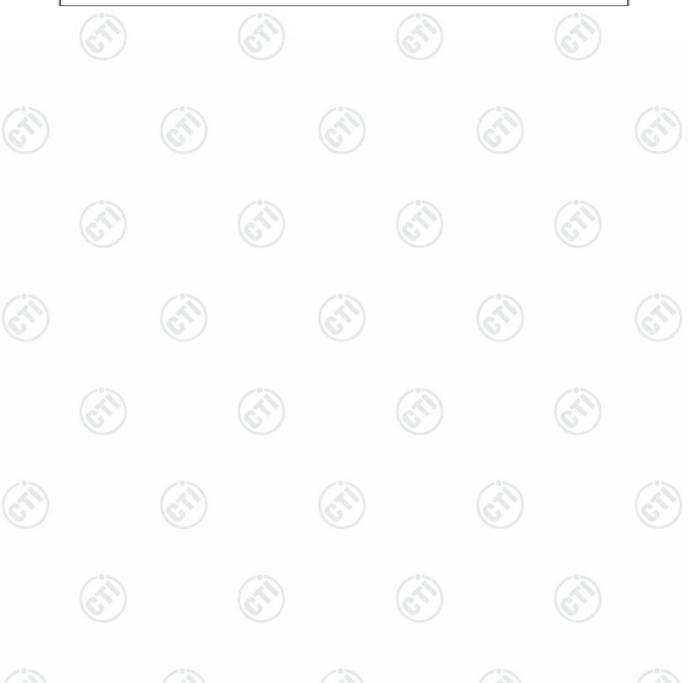
Lavon Ma

Aaron Ma

Date of Issue:

Mar. 07, 2023

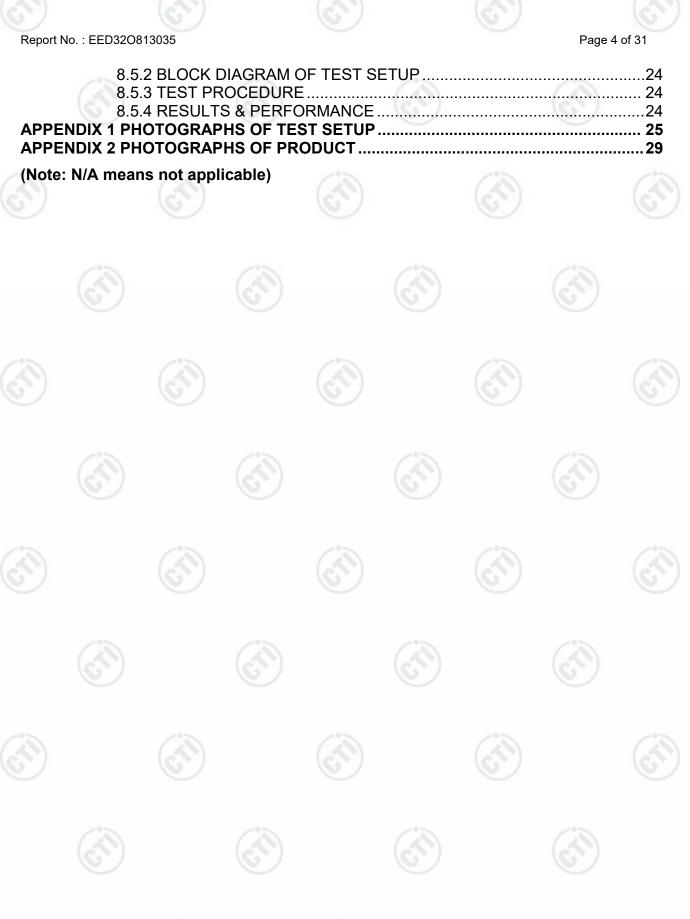
Check No.: 7519220822


Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No.: EED32O813035 Page 2 of 31

Modification Record

No.	Last Report No.	Modification Description			
1	EED32O813034	First report			
2	2 EED32O813035 Change the product model				
All test data come from the report of No. EED32O813035					



Report No.: EED32O813035 Page 3 of 31

TABLE OF CONTENTS

1.	GENERAL INFORMATION	5
2.	TEST SUMMARY	5
3.	MEASUREMENT UNCERTAINTY	6
	PRODUCT INFORMATION AND TEST SETUP	
	4.1 PRODUCT INFORMATION	6
	4.2 TEST SETUP CONFIGURATION	6
	4.3 TEST MODE DESCRIPTION	
	4.4 MONITORING OF PRODUCT FOR THE IMMUNITY TEST	
	4.5 SUPPORT EQUIPMENT	
5	FACILITIES AND ACCREDITATIONS	8
٠.	5.1 TEST FACILITY	
	5.2 TEST EQUIPMENT LIST	
	5.3 LABORATORY ACCREDITATIONS AND LISTINGS	10
6	CONDUCTED DISTURBANCE	
Š	6.1 Limits	11
	6.2 BLOCK DIAGRAM OF TEST SETUP	
	6.3 TEST PROCEDURE	
	6.4 GRAPHS AND DATA	
7	RADIATED EMISSION	
٠.	7.1 LIMITS	
	7.2 BLOCK DIAGRAM OF TEST SETUP	
	7.3 TEST PROCEDURE	
	7.4 GRAPHS AND DATA	
0	IMMUNITY TEST	
0.	8.1 ELECTROSTATIC DISCHARGE	10
	8.1.1 TEST SPECIFICATION	
	8.1.2 BLOCK DIAGRAM OF TEST SETUP	
	8.1.3 TEST PROCEDURE	
	8.1.4 RESULTS & PERFORMANCE	
	8.2 RADIO-FREQUENCY ELECTROMAGNETIC FIELD	
	8.2.1 TEST SPECIFICATION	
	8.2.2 BLOCK DIAGRAM OF TEST SETUP	
	8.2.3 TEST PROCEDURE	
	8.2.4 RESULT & PERFORMANCE	
	8.3 FAST TRANSIENTS	
	8.3.1 TEST SPECIFICATION	
	8.3.2 BLOCK DIAGRAM OF TEST SETUP	
	8.3.3 TEST PROCEDURE	
	8.3.4 RESULTS & PERFORMANCE	
	8.4 SURGES	23
	8.4.1 TEST SPECIFICATION 8.4.2 BLOCK DIAGRAM OF TEST SETUP	23
	8.4.3 TEST PROCEDURE	
	8.4.4 RESULTS & PERFORMANCE	
	8.5 RADIO-FREQUENCY COMMON MODE	
	8.5.1 TEST SPECIFICATION	24

Report No.: EED32O813035 Page 5 of 31

1. GENERAL INFORMATION

Applicant: China Leadshine Technology Co., Ltd.

15-20/F, Block B, Nanshan I Valley, No.3157, Shahe West

Road, Nanshan District, Shenzhen

Manufacturer: China Leadshine Technology Co., Ltd.

15-20/F, Block B, Nanshan I Valley, No.3157, Shahe West

Road, Nanshan District, Shenzhen

EMC Directive: 2014/30/EU

Product: Integrated Servo Motor

Trade mark:

運用製能 Leadshins

%Leadshine

Model/Type reference: iSV2-CAN8075V48H,iSV2-RS8075V48H,

iSV2-CAN8075V48G, iSV2-RS8075V48G iSV2-CAN8675V48H,iSV2-RS8675V48H, iSV2-CAN8675V48G, iSV2-RS8675V48G

iSV2-***8075V48***, iSV2-***8675V48***; "*" values are 0 to 9

and A to Z characters

Serial Number: N/A

Report Number: EED32O813035 Sample Received Date: Aug . 25, 2022

Sample tested Date: Aug . 25, 2022 to Sep. 09, 2022

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

2. TEST SUMMARY

The Product has been tested according to the following specifications:

EMISSION			
Standard Test Item			
EN IEC 61000-6-4	Conducted Emission	Yes	
EN IEC 61000-6-4	Radiated Emission	Yes	

IMMUNITY (EN IEC 61000-6-2)				
Standard	Test Item	Test		
IEC 61000-4-2	Electrostatic discharge	Yes		
IEC 61000-4-3	Radio-frequency electromagnetic field	Yes		
IEC 61000-4-4	Fast transients	Yes		
IEC 61000-4-5	Surges	Yes		
IEC 61000-4-6	Radio-frequency common mode	Yes		
IEC 61000-4-8	Power-frequency magnetic fields	N/A*		
IEC 61000-4-11	Voltage dips and voltage interruptions	Yes		

Remark*: The Product doesn't contain any device susceptible to magnetic fields.

Report No.: EED32O813035 Page 6 of 31

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Test item	Value (dB)
Conducted disturbance	3.1
Radiated disturbance (30MHz to 1GHz)	4.9

4. PRODUCT INFORMATION AND TEST SETUP

4.1 PRODUCT INFORMATION

Ratings:	DC24-70V
The highest frequency of the internal sources of	
the EUT is :	between 108 MHz and 500 MHz, the measurement shall only be made up to 2 GHz.
	between 500 MHz and 1 GHz, the measurement shall only be made up to 5 GHz.
	above 1 GHz, the measurement shall be made up to 5 times the highest frequency or 6 GHz, whichever is less.
Model difference:	Their electrical circuit design, layout, components used and internal wiring are identical. The difference is naming and
	software version. The test model is iSV2-CAN8075V48Hand the test results are applicable to the others.

4.2 TEST SETUP CONFIGURATION

See test photographs attached in Appendix 1 for the actual connections between product and support equipment.

4.3 TEST MODE DESCRIPTION

Test Mode Test Status			
Normal	The power supply of the product is in normal working condition	(6	

4.4 MONITORING OF PRODUCT FOR THE IMMUNITY TEST

Visual: Observe whether EUT operates normally

4.5 SUPPORT EQUIPMENT

	No.	Device Type	Brand	Model	Series No.	Data Cable	Power Cord
0	1.				-		/-

Notes:

Report No.: EED32O813035 Page 7 of 31

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Report No.: EED32O813035 Page 8 of 31

5. FACILITIES AND ACCREDITATIONS

5.1 TEST FACILITY

All measurement facilities used to collect the measurement data are located at Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

5.2 TEST EQUIPMENT LIST

Instrumentation: The following list contains equipments used at CTI for testing. The calibrations of the measuring instruments, including any accessories that may effect such calibration, are checked frequently to assure their accuracy. Adjustments are made and correction factors applied in accordance with instructions contained in the manual for the measuring instrument.

Equipment used during the tests:

Shielding Room No. 3 - Conducted disturbance Test					
Equipment Manufacturer Model Serial No. Due Date					
Receiver	R&S	ESCI	100435	05/05/2023	
LISN	R&S	ENV216	100098	02/28/2023	

3M Semi-anechoic Chamber (2)- Radiated disturbance Test					
Equipment	Manufacturer	Model	Serial No.	Due Date	
3M Chamber & Accessory Equipment	TDK	SAC-3	("(")	05/21/2025	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	401	10/15/2022	
Multi device Controller	maturo	NCD/070/10711 112		Carry.	
Horn Antenna	schwarzbeck	BBHA 9120D	9120D-1869	04/16/2024	
Pre-amplifier	Agilent	8449B	3008A02425	06/19/2023	
Receiver	R&S	ESCI7	100938-003	10/13/2022	

Shielding Room No. 3 - Electrostatic discharge Test (EN 61000-4-2)					
Equipment Manufacturer Model Serial No. Due Date					
ESD Simulator	TESEQ	NSG437	1182	06/09/2023	

Report No.: EED32O813035 Page 9 of 31

3M Full-anechoic Chamber - Continuous RF electromagnetic radiated field disturbances Test (IEC 61000-4-3)									
Equipment	Manufacturer	Model	Serial No.	Due Date					
3M Chamber & Accessory Equipment	ETS-LINDGREN	FACT-3	3510	05/19/2025					
Signal Generator	R&S	SMB 100B	103084	05/19/2023					
Power Probe	R&S	NRP6A	103342	07/12/2023					
Power Probe	R&S	NRP6A	103343	07/12/2023					
Power Amplifier	R&S	BBA 150-BC500	104743	06/05/2023					
Power Amplifier	BONN	BLMA 1060-100	2113427	08/24/2023					
RF switch	R&S	OSP220	102205						
Directional coupler	BONN	BDC 1060-40/500	2128343-04	12/02/2022					
Stacked double LogPer. Antenna	schwarzbeck	STLP 9128 E special	9128ES-110	03/29/2024					
Horn Antenna	schwarzbeck	STLP 9149	0776	05/21/2023					

Shielding Room No. 3 - Electrical fast transients/burst (EFT/B)/Surges Test (IEC 61000-4-4) (IEC 61000-4-5)										
Equipment Manufacturer Model Serial No. Due Date										
Compact Generator EM-Test UCS500M/6B V0603101093 03/31/2023										

Shielding Room No. 2 - Injected currents Test (IEC 61000-4-6)										
Equipment Manufacturer Model Serial No. Due Date										
RF conduction immunity test system	TESEQ	NSG 4070C-80	59089	08/27/2023						
Attenuator	BIRD	75-A-MFN-06	0543	07/25/2023						
CDN	TESEQ	CDN M516AS	59088	09/13/2022						

Shielding Room No. 2 - Voltage dips and interruptions Test (IEC 61000-4-11)									
Equipment	Manufacturer	Model	Serial No.	Due Date					
AC / DC programmable regulated power supply	EM TEST	Net Wave 30	P1613178144	06/05/2023					
Single / three phase scintillation simulator	EM TEST	503N32	P1613178045	06/05/2023					
Three phase harmonic and scintillation analyzer	EM TEST	DPA 503N	P154516605	06/05/2023					
Voltage dip simulator	EM test	PFS 503N32.2	P1919229535	03/31/2023					



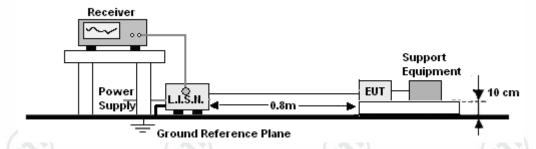
5.3 LABORATORY ACCREDITATIONS AND LISTINGS

The measuring equipment utilized to perform the tests documented in this report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable under the ISO/IEC 17025 to international or national standards. Equipment has been calibrated by accredited calibration laboratories.

Report No.: EED32O813035 Page 11 of 31

6. CONDUCTED DISTURBANCE

6.1 Limits


Limits for Group 1 class A Equipment

Frequency range (MHz)	Limits dB(μV				
(1411 12)	Quasi-peak	Average			
0,15 to 0,50	79	66			
0,50 to 30	73	60			

NOTE: The lower limit shall apply at the transition frequency.

6.2 BLOCK DIAGRAM OF TEST SETUP

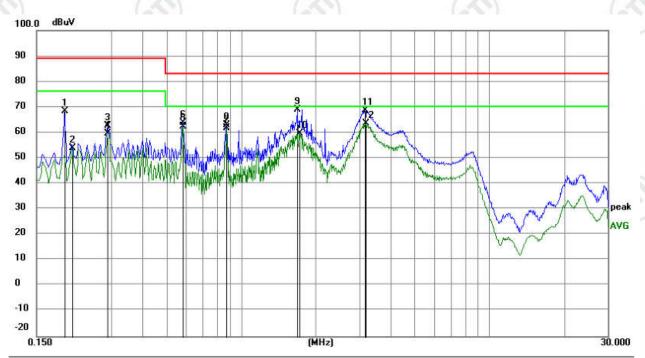
For AC mains port:

6.3 TEST PROCEDURE

For AC mains port:

- a. The Product was placed on a nonconductive table 0.1m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).
- b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

Report No.: EED32O813035 Page 12 of 31


6.4 GRAPHS AND DATA

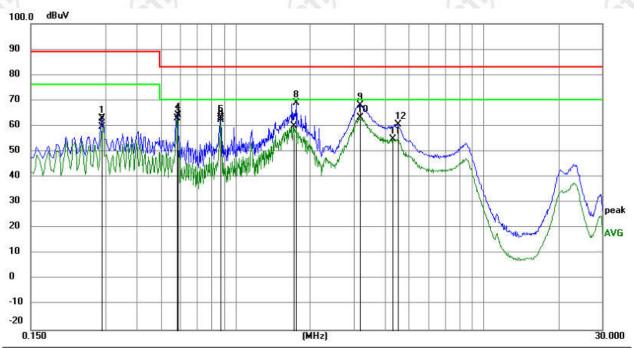
Product: Integrated Servo Motor Model/Type reference iSV2-CAN8075

V48H

DC 70V Temperature/Humidity **Power** 24℃/52%

Mode Normal **Polarization**

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1949	58.51	9.87	68.38	89.00	-20.62	QP	
2	0.2085	44.16	9.89	54.05	76.00	-21.95	AVG	
3	0.2895	52.50	10.05	62.55	89.00	-26.45	QP	
4	0.2895	49.62	10.05	59.67	76.00	-16.33	AVG	
5	0.5819	52.25	10.05	62.30	70.00	-7.70	AVG	
6	0.5820	53.69	10.05	63.74	83.00	-19.26	QP	
7	0.8744	51.89	9.85	61.74	70.00	-8.26	AVG	
8	0.8745	53.07	9.85	62.92	83.00	-20.08	QP	
9	1.6845	59.17	9.80	68.97	83.00	-14.03	QP	
10	1.7114	49.90	9.80	59.70	70.00	-10.30	AVG	
11	3.1514	58.88	9.79	68.67	83.00	-14.33	QP	
12 *	3.1829	53.81	9.79	63.60	70.00	-6.40	AVG	



Report No.: EED32O813035 Page 13 of 31

V48H

Power : DC 70V Temperature/Humidity : $24 \degree /52\%$

Mode : Normal Polarization : N

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.2895	5 53.01	10.05	63.06	89.00	-25.94	QP	
2	0.2895	5 49.73	10.05	59.78	76.00	-16.22	AVG	
3	0.5820	52.82	10.05	62.87	70.00	-7.13	AVG	
4	0.5865	5 54.25	10.05	64.30	83.00	-18.70	QP	
5	0.8745	5 53.33	9.85	63.18	83.00	-19.82	QP	
6	0.8745	5 52.37	9.85	62.22	70.00	-7.78	AVG	
7	1.7115	5 50.01	9.80	59.81	70.00	-10.19	AVG	
8	1.7610	59.28	9.80	69.08	83.00	-13.92	QP	
9	3.1695	5 58.30	9.79	68.09	83.00	-14.91	QP	
10 *	3.1829	53.53	9.79	63.32	70.00	-6.68	AVG	
11	4.3034	45.10	9.78	54.88	70.00	-15.12	AVG	
12	4.5195	5 50.90	9.78	60.68	83.00	-22.32	QP	

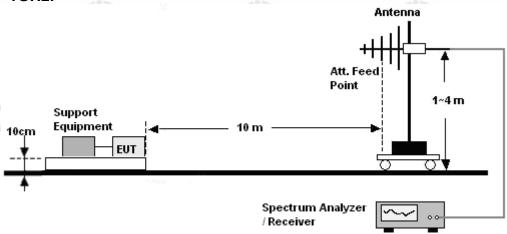
Note: 1. Margin(dB)=Limit(dBuV)-Measurement(dBuV).

- 2. Measurement(dBuV)=Reading_Level(dBuV)+Correct Factor(dB).
- 3. Through Pre-scan, DC 70V was the worst case; only the worst case was in the report.

Report No.: EED32O813035 Page 14 of 31

7. RADIATED EMISSION

7.1 LIMITS


Limits for Group 1 class A Equipment

Frequency (MHz)	Quasi-peak limits at 3m dB(μV/m) (≤ 20 kVA)
30-230	50
230-1000	57

NOTE: The lower limit shall apply at the transition frequencies.

7.2 BLOCK DIAGRAM OF TEST SETUP

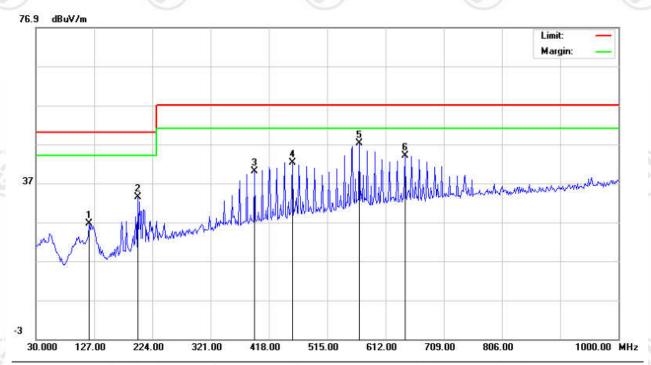
30MHz ~ 1GHz:

7.3 TEST PROCEDURE

30MHz ~ 1GHz:

- a. The Product was placed on the non-conductive turntable 0.8m above the ground at a chamber.
- b. Set the spectrum analyzer/receiver in Peak detector, Max Hold mode, and 120 kHz RBW. Record the maximum field strength of all the pre-scan process in the full band when the antenna is varied between 1~4 m in both horizontal and vertical, and the turntable is rotated from 0 to 360 degrees.
- c. For each frequency whose maximum record was higher or close to limit, measure its QP value: vary the antenna's height and rotate the turntable from 0 to 360 degrees to find the height and degree where Product radiated the maximum emission, then set the test frequency analyzer/receiver to QP Detector and specified bandwidth with Maximum Hold Mode, and record the maximum value.

Report No.: EED32O813035 Page 15 of 31


7.4 GRAPHS AND DATA

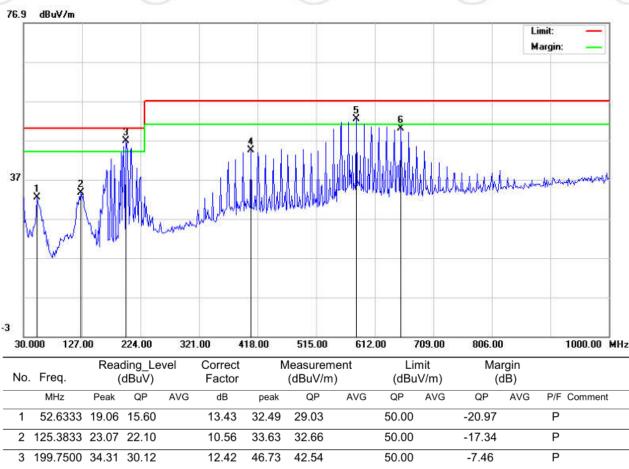
Model/Type reference Product : Integrated Servo Motor iSV2-CAN8075V

48H

DC 70V Power Temperature/Humidity : 22℃/53% Mode Normal **Polarization** : Horizontal

Note 30MHz-1GHz

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasurem (dBuV/m		Lin (dBu)		Maı (c	gin IB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	118.9167	14.80	12.50		11.73	26.53	24.23		50.00		-25.77		Р	
2	199.7500	20.96	18.61		12.42	33.38	31.03		50.00		-18.97		Р	
3	393.7500	21.45	17.66		18.46	39.91	36.12		57.00		-20.88		Р	
4	456.8000	22.25	20.52		19.88	42.13	40.40		57.00		-16.60		Р	
5	568.3500	24.72	21.68		22.39	47.11	44.07		57.00		-12.93		Р	
6	644.3333	20.35	18.52		23.70	44.05	42.22		57.00		-14.78		Р	


Report No.: EED32O813035 Page 16 of 31

Integrated Servo Motor **Product** Model/Type reference iSV2-CAN8075V

48H

Power DC 70V Temperature/Humidity 22°C/53% **Polarization** Mode Normal Vertical

Note 30MHz-1GHz

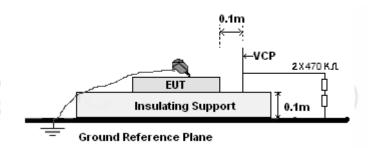
Freq.	(dBuV)		Factor		(dBuV/m)	(dBu	V/m)		IB)		
MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F Comme	ent
52.6333	19.06	15.60		13.43	32.49	29.03		50.00		-20.97		Р	
125.3833	23.07	22.10		10.56	33.63	32.66		50.00		-17.34		Р	
199.7500	34.31	30.12		12.42	46.73	42.54		50.00		-7.46		Р	
406.6833	25.63	21.50		18.77	44.40	40.27		57.00		-16.73		Р	
581.2833	29.68	24.61		22.68	52.36	47.29		57.00		-9.71		Р	
655.6500	26.09	22.50		23.86	49.95	46.36		57.00		-10.64		Р	
	52.6333 125.3833 199.7500 406.6833 581.2833	MHz Peak 52.6333 19.06 125.3833 23.07 199.7500 34.31 406.6833 25.63 581.2833 29.68	. (/	MHz Peak QP AVG 52.6333 19.06 15.60 125.3833 23.07 22.10 199.7500 34.31 30.12 406.6833 25.63 21.50 581.2833 29.68 24.61	MHz Peak QP AVG dB 52.6333 19.06 15.60 13.43 125.3833 23.07 22.10 10.56 199.7500 34.31 30.12 12.42 406.6833 25.63 21.50 18.77 581.2833 29.68 24.61 22.68	MHz Peak QP AVG dB peak 52.6333 19.06 15.60 13.43 32.49 125.3833 23.07 22.10 10.56 33.63 199.7500 34.31 30.12 12.42 46.73 406.6833 25.63 21.50 18.77 44.40 581.2833 29.68 24.61 22.68 52.36	MHz Peak QP AVG dB peak QP 52.6333 19.06 15.60 13.43 32.49 29.03 125.3833 23.07 22.10 10.56 33.63 32.66 199.7500 34.31 30.12 12.42 46.73 42.54 406.6833 25.63 21.50 18.77 44.40 40.27 581.2833 29.68 24.61 22.68 52.36 47.29	MHz Peak QP AVG dB peak QP AVG 52.6333 19.06 15.60 13.43 32.49 29.03 29.03 22.10 10.56 33.63 32.66 32.66 32.66 32.54 46.73 42.54 44.66.6833 25.63 21.50 18.77 44.40 40.27 47.29	MHz Peak QP AVG dB peak QP AVG QP 52.6333 19.06 15.60 13.43 32.49 29.03 50.00 125.3833 23.07 22.10 10.56 33.63 32.66 50.00 199.7500 34.31 30.12 12.42 46.73 42.54 50.00 406.6833 25.63 21.50 18.77 44.40 40.27 57.00 581.2833 29.68 24.61 22.68 52.36 47.29 57.00	MHz Peak QP AVG dB peak QP AVG QP AVG 52.6333 19.06 15.60 13.43 32.49 29.03 50.00 125.3833 23.07 22.10 10.56 33.63 32.66 50.00 199.7500 34.31 30.12 12.42 46.73 42.54 50.00 406.6833 25.63 21.50 18.77 44.40 40.27 57.00 581.2833 29.68 24.61 22.68 52.36 47.29 57.00	MHz Peak QP AVG dB peak QP AVG QP	MHz Peak QP AVG dB peak QP AVG QP	MHz Peak QP AVG dB peak QP AVG PP PP 52.6333 19.06 15.60 13.43 32.49 29.03 50.00 -20.97 P 125.3833 23.07 22.10 10.56 33.63 32.66 50.00 -17.34 P 199.7500 34.31 30.12 12.42 46.73 42.54 50.00 -7.46 P 406.6833 25.63 21.50 18.77 44.40 40.27 57.00 -16.73 P 581.2833 29.68 24.61 22.68 52.36 47.29 57.00 -9.71 P

Note: 1. Margin(dB)=Measurement-Limit.

- 2. Measurement(dBuV/m)=Reading_Level+Correct Factor.
- 3. Correct Factor(dB)=Ant Factor+Cable loss.
- 4.Through Pre-scan, DC 70V was the worst case; only the worst case was in the report.

	General Performance Criteria						
Product Standard	EN IEC 61000-6-2:2019						
CRITERION A	The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.						
CRITERION B	The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. No change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.						
CRITERION C	Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.						

Report No.: EED32O813035 Page 18 of 31


8.1 ELECTROSTATIC DISCHARGE 8.1.1 TEST SPECIFICATION

Basic Standard : EN IEC 61000-6-2 & IEC 61000-4-2

Test Port : Enclosure port
Discharge Impedance : 330 ohm / 150 pF
Discharge Mode : Single Discharge

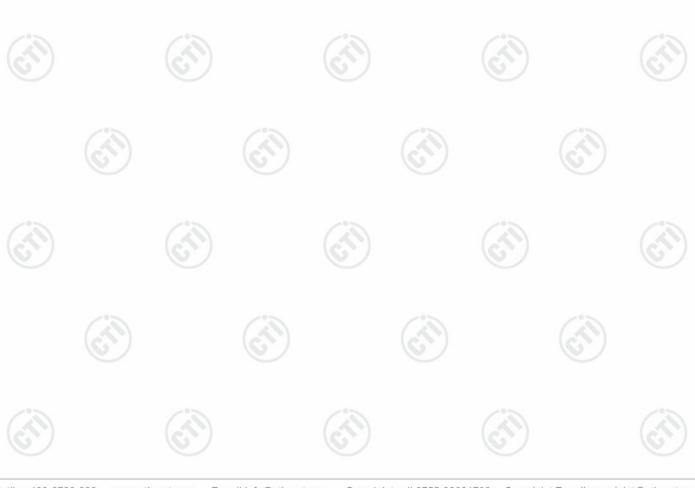
Discharge Period : one second between each discharge

8.1.2 BLOCK DIAGRAM OF TEST SETUP

8.1.3 TEST PROCEDURE

- a. Electrostatic discharges were applied only to those points and surfaces of the Product that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the Product.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the Product as fast as possible (without causing mechanical damage) to touch the Product. After each discharge, the ESD generator was removed from the Product and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the Product. The ESD generator was positioned vertically at a distance of 0.1 meters from the Product with the discharge electrode touching the HCP.
- h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the Product were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the Product.

Report No.: EED32O813035 Page 19 of 31


8.1.4 RESULTS & PERFORMANCE

48H

Power: DC 70VTemperature: 23° CMode: NormalHumidity: 52%

Discharge Method	Discharge Position	Voltage (±kV)	Min. No. of Discharge per polarity (Each Point)	Performance Criterion	Test Result
(6)	Conductive Surfaces	4	10	В	A
Contact Discharge	Indirect Discharge HCP	4	10	В	N/A*
	Indirect Discharge VCP	4	10	В	Α
Air Discharge	Slots, Apertures, and Insulating Surfaces	8	10	В	A

Remark*: This product is a landing equipment.

Page 20 of 31 Report No.: EED32O813035

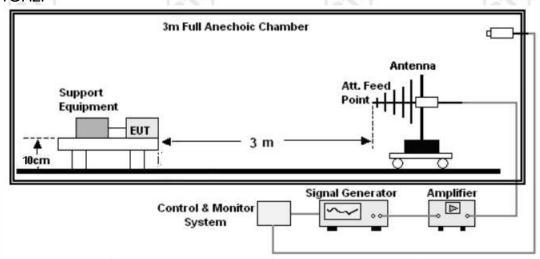
8.2 RADIO-FREQUENCY ELECTROMAGNETIC FIELD

8.2.1 TEST SPECIFICATION

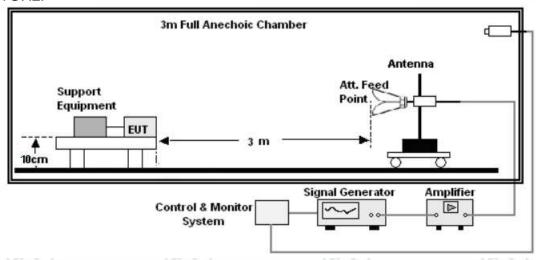
Basic Standard EN IEC 61000-6-2 & IEC 61000-4-3

Test Port Enclosure port

Step Size 1%


Modulation 1kHz, 80% AM

Dwell Time 1 second


Polarization Horizontal & Vertical

8.2.2 BLOCK DIAGRAM OF TEST SETUP

Below 1GHz:

Above 1GHz:

8.2.3 TEST PROCEDURE

- a. The testing was performed in a fully-anechoic chamber. The transmit antenna was located at a distance of 3m from the Product.
- b. The frequency range is swept from 80MHz to 1000MHz and 1400MHz to 6000MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave. The rate of sweep did not exceed 1.5x 10⁻³ decade/s. Where the frequency range is swept incrementally, the step size was 1%.
- c. The test was performed with the Product exposed to both vertically and horizontally polarized fields on each of the four sides.


8.2.4 RESULT & PERFORMANCE

Product: Integrated Servo Motor Model/Type reference: iSV2-CAN8075

V48H

Power: DC 70VTemperature: 23° CMode: NormalHumidity: 52°

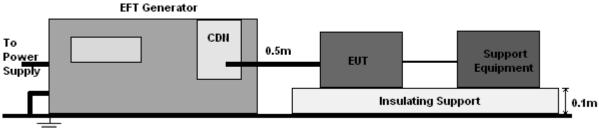
Frequency (MHz)	Position	Field Strength (V/m)	Performance Criterion	Test Result
80 - 1000	Front, Right, Back, Left	10	(A	A
1400 - 6000	Front, Right, Back, Left	3	A	A

Report No. : EED32O813035 Page 22 of 31

8.3 FAST TRANSIENTS

8.3.1 TEST SPECIFICATION

Basic Standard : EN IEC 61000-6-2 & IEC 61000-4-4


Test Port : Input DC power port

Impulse Frequency: 5 kHzImpulse Wave-shape: 5/50 nsBurst Duration: 15 msBurst Period: 300 ms

Test Duration : 2 minute per polarity

8.3.2 BLOCK DIAGRAM OF TEST SETUP

For input AC power ports:

Ground Reference Plane

8.3.3 TEST PROCEDURE

- a. The Product and support units were located on a non-conductive table above ground reference plane.
- b. A 0.5m-long power cord was attached to Product during the test.

8.3.4 RESULTS & PERFORMANCE

Product: Integrated Servo Motor Model/Type reference: iSV2-CAN807

5V48H

Power: DC 70VTemperature: 23° CMode: NormalHumidity: 52%

Coupling	Voltage (kV)	Polarity	Performance Criterion	Test Result
DC power ports	2	±	В	Α

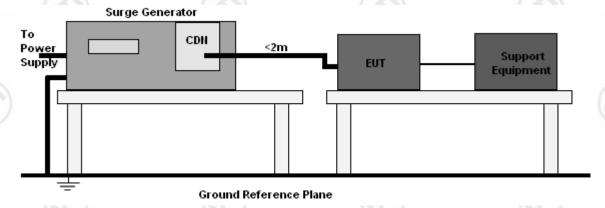
Report No.: EED32O813035 Page 23 of 31

8.4 SURGES

8.4.1 TEST SPECIFICATION

Basic Standard : EN IEC 61000-6-2 & IEC 61000-4-5

Test Port : Input DC power port


Wave-Shape : Open Circuit Voltage - 1.2 / 50 us

Short Circuit Current - 8 / 20 us

Pulse Repetition Rate : 1 pulse / min.

Test Events : 5 pulses (positive & negative) for each polarity

8.4.2 BLOCK DIAGRAM OF TEST SETUP

8.4.3 TEST PROCEDURE

- a. The surge is to be applied to the Product power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave.
- b. The power cord between the Product and the coupling/decoupling networks shall be 2 meters in length (or shorter). Interconnection line between the Product and the coupling/decoupling networks shall be 2 meters in length (or shorter).

8.4.4 RESULTS & PERFORMANCE

Product: Integrated Servo Motor Model/Type reference: iSV2-CAN8075V

48H

Power: DC 70VTemperature: 23° CMode: NormalHumidity: 52°

Coupling Line	Voltage (kV)	Polarity	Performance Criterion	Test Result
DC port	0.5	±	В	Α

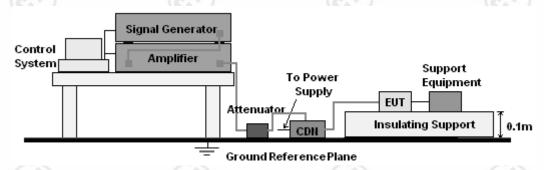
Report No.: EED32O813035 Page 24 of 31

8.5 RADIO-FREQUENCY COMMON MODE

8.5.1 TEST SPECIFICATION

Basic Standard : EN IEC 61000-6-2 & IEC 61000-4-6

Test Port : Input DC power port


Step Size : 1%

Modulation : 1kHz, 80% AM

Dwell Time : 1 second

8.5.2 BLOCK DIAGRAM OF TEST SETUP

For input DC power port:

8.5.3 TEST PROCEDURE

For DC power port:

- a. The Product and support units were located at a ground reference plane with the interposition of a 0.1 m thickness insulating support and the CDN was located on GRP directly.
- b. The frequency range is swept from 150 kHz to 80MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave. The rate of sweep did not exceed 1.5x 10⁻³ decade/s. Where the frequency range is swept incrementally, the step size was 1% of fundamental.
- c. The dwell time at each frequency shall be not less than the time necessary for the Product to be able to respond.

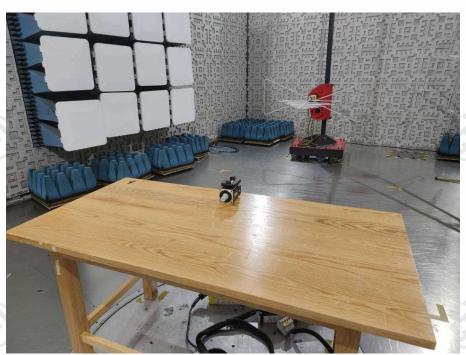
8.5.4 RESULTS & PERFORMANCE

Product: Integrated Servo Motor Model/Type reference: iSV2-CAN8075V

48H

Power: DC 70VTemperature: 23° CMode: NormalHumidity: 52%

Inject Line	Frequency (MHz)	Voltage Level (V r.m.s.)	Performance Criterion	Test Result
DC power ports	0.15 - 80	10	Α	A

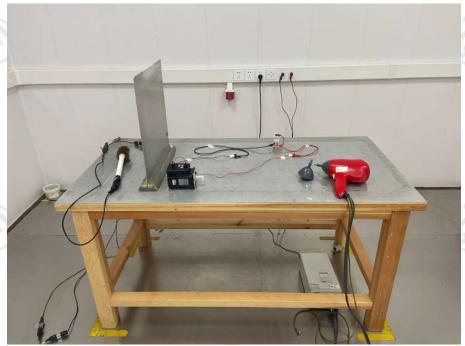


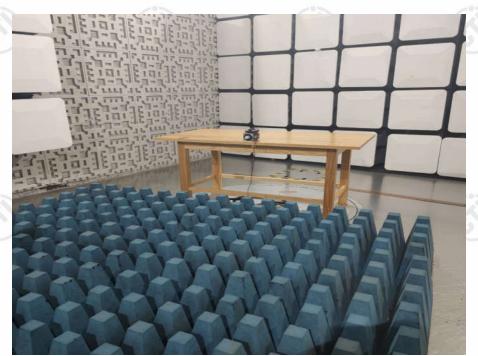
Report No.: EED32O813035 Page 25 of 31

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

CONDUCTED EMISSION

RADIATED EMISSION TEST SETUP

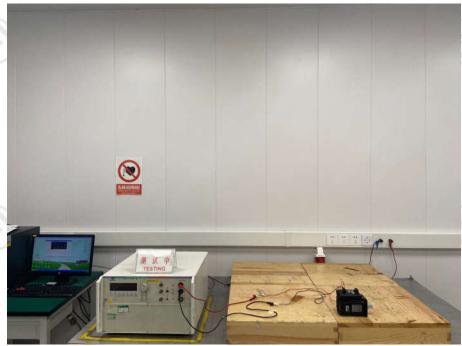




Report No.: EED32O813035 Page 26 of 31

ELECTROSTATIC DISCHARGE TEST SETUP

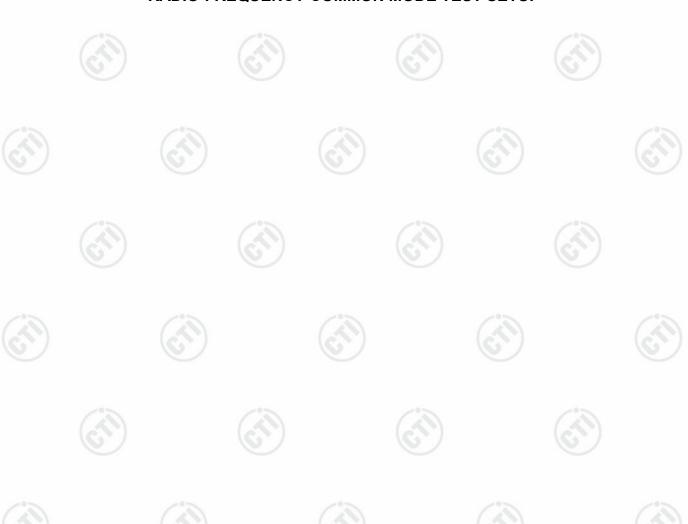
RADIO-FREQUENCY ELECTROMAGNETIC FIELD TEST SETUP



Report No.: EED32O813035 Page 27 of 31

FAST TRANSIENTS TEST SETUP

SURGES TEST SETUP



Report No.: EED32O813035 Page 28 of 31

RADIO-FREQUENCY COMMON MODE TEST SETUP

Report No.: EED32O813035 Page 29 of 31

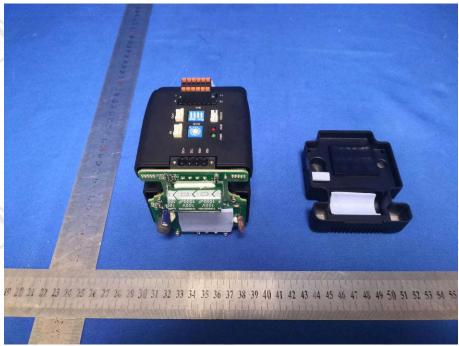
APPENDIX 2 PHOTOGRAPHS OF PRODUCT

View of Product-1

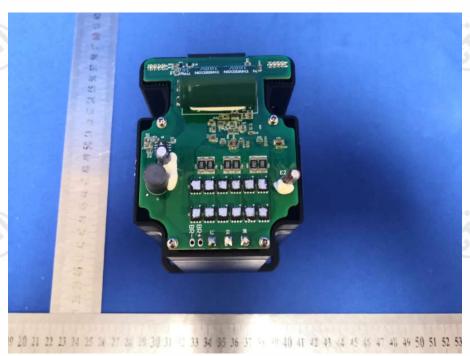
View of Product-2

Report No.: EED32O813035 Page 30 of 31

View of Product-3



View of Product-4



Report No.: EED32O813035 Page 31 of 31

View of Product-5

View of Product-6

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

*** End of Report ***

