Software Manual

LMD CANopen CiA 301 and CiA 402 Implementation

Publication LMD-CANOPEN-REV-E

02/2022

The information provided in this documentation contains general descriptions and/or technical characteristics of the performance of the products contained herein. This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or use thereof.

Neither Novanta IMS nor any of its affiliates or subsidiaries shall be responsible or liable for misuse of the information contained herein. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us.

You agree not to reproduce, other than for your own personal, noncommercial use, all or part of this document on any medium whatsoever without permission of Novanta IMS, given in writing. You also agree not to establish any hypertext links to this document or its content.

Novanta IMS does not grant any right or license for the personal and noncommercial use of the document or its content, except for a non-exclusive license to consult it on an "as is" basis, at your own risk. All other rights are reserved.

All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to help ensure compliance with documented system data, only the manufacturer should perform repairs to components.

When devices are used for applications with technical safety requirements, the relevant instructions must be followed. Failure to use Novanta IMS software or approved software with our hardware products may result in injury, harm, or improper operating results.

Failure to observe this information can result in injury or equipment damage.

For information on the availability of products, go to https://novantaims.com/

The information contained in the present document is subject to change without notice. The technical characteristics of the devices described in the present document also appear online. The characteristics that are presented in the present document should be the same as those characteristics that appear online. In line with our policy of constant improvement, we may revise content over time to improve clarity and accuracy. If there is a difference between the document and online information, use the online information as reference. All details provided are technical data which do not constitute warranted qualities.

Some of the product designations are registered trademarks of their respective owners, even if this is not explicitly indicated.

Table of Contents

Safety Info	ormation	5
-	Important Information	5
	Qualification of Personnel	5
	Intended Use	5
	Product Related Information	6
	Terminology Derived from Standards	7
About Thi	s Manual	9
	Source Documents and Software	9
	CANopen Configurator	9
	Further Reading	
Chapter 1	CANopen Protocol Basics	10
	Introduction to CANopen Technology	11
	Communication Profile	13
	Service Data Communication	19
	Process Data Communication	24
	Synchronization	31
	Emergency Service	
	Network Management Services	
Chapter 2	Commissioning	40
	Commissioning the Device	41
	Address and Baud Rate	41
	Commissioning via CANopen Configuration Utility	42
	Commissioning via Layer Setting Services	42
	Commissioning via Switch Mode Global	43
	Commissioning via Switch Mode Selective	46
Chapter 3	Operation	47
	Operating States	48
	Control and Status	51
	Option Code Objects	54
	Supported Modes of Operation	58
	Profile Position Mode	59
	Position, Velocity, and Acceleration Objects	63
	Profile Velocity Mode	68
	Profile Velocity Mode Objects	70
	Homing Mode	72
	Homing Mode Objects	73
	Torque Mode (Closed Loop Models Only)	79
	Torque Mode Objects	
	Cyclic Synchronous Position	
	Position Control Function	83
	Factors	87

Optional Application FE (General I/O)	39
ppendix A Diagnostics and Troubleshooting	91
Fieldbus Communication Error Diagnostics	91
Error Diagnostics via Fieldbus	91
CANopen Error Messages	92
Status LED	95
ppendix B Object Dictionary	96
Specification for the Objects	96
Overview of Object Group 1000h	97
Overview of Manufacturer Specific Objects Group 2000h	99
Overview of Assignment Objects Group 6000h1	02
Details of Object Group 1000h1	
Details of Object Group 2000h (Mfg Specific)1	27
Details of Object Group 5000h (Mfg Factory Specific)1	
Details of Assignment Objects Group 6000h1	71
Warranty1	72
Document Revision History1	72

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, service, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a "Danger" or "Warning" safety label or message indicates that an electrical hazard exists which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages and labels that follow this symbol to avoid possible injury or death.

A DANGER

DANGER indicates a hazardous situation which, if not avoided, **will result in** death or serious injury.

AWARNING

WARNING indicates a hazardous situation which, if not avoided, **could result in** death or serious injury.

ACAUTION

CAUTION indicates a hazardous situation which, if not avoided, **could result in** minor or moderate injury.

NOTICE

NOTICE is used to address practices not related to physical injury.

Qualification of Personnel

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel. No responsibility is assumed by Novanta IMS for any consequences arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

Intended Use

This product is a motor with an integrated drive and is intended for industrial use according to this manual.

This product may only be used in compliance with all applicable safety regulations and directives, the specified requirements, and the technical data.

Prior to using this product, a risk assessment must be performed in view of the planned application. Based on the results, the appropriate safety measures must be implemented. Since this product is used as a component in an entire system, the safety of persons must be ensured by means of the design of the entire system (e.g., machine design).

This product may only be operated with the specified cables and accessories. Use only genuine accessories and spare parts. This product must NEVER be operated in explosive atmospheres (e.g., hazardous locations, Ex areas).

Any use other than the use explicitly permitted is prohibited and can result in hazards.

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel.

Product Related Information

When the system is started, the drives are usually out of the operator's view and cannot be visually monitored.

A DANGER

UNINTENDED CONSEQUENCES OF EQUIPMENT OPERATION

Only start the system if there are no persons in the zone of operation.

Failure to follow these instructions will result in death or serious injury.

The designer of any control scheme must consider the potential failure modes of control paths and, for certain critical functions, provide a means to achieve a safe state during and after a path failure. Examples of critical control functions are emergency stop, overtravel stop, power outage, and restart.

AWARNING

LOSS OF CONTROL

- Separate or redundant control paths must be provided for critical functions.
- System control paths may include communication links. Consideration must be given to the implication of unanticipated transmission delays or failures of the link.

Observe all accident prevention regulations and local safety guidelines.¹

 Each implementation of the product must be individually and thoroughly tested for proper operation before being placed into service.

Failure to follow these instructions can result in death or serious injury.

For USA: Additional information, refer to NEMA ICS 1.1 (latest edition), "Safety Guidelines for the Application, Installation, and Maintenance of Solid State Control" and to NEMA ICS 7.1 (latest edition), "Safety Standards for Construction and Guide for Selection, Installation and Operation of Adjustable-Speed Drive Systems".

UNINTENDED EQUIPMENT OPERATION

- Only use software approved by Novanta IMS for use with this equipment.
- Update the application program every time the physical hardware configuration is changed.

Failure to follow these instructions can result in death, serious injury, or equipment damage.

Terminology Derived from Standards

The technical terms, terminology, symbols, and the corresponding descriptions in this manual, or that appear in or on the products themselves, are generally derived from the terms or definitions of international standards.

In the area of functional safety systems, drives, and general automation, this may include, but is not limited to, terms such as safety, safety function, safe state, fault, fault reset, mal-function, failure, error, error message, dangerous, etc.

Among others, these standards include:

·	
EN 61131-2:2007	Programmable controllers, part 2: Equipment requirements and
	tests.
ISO 13849-1:2008	Safety of machinery: Safety-related parts of control systems. Gen-
	eral principles for design.
EN 61496-1:2013	Safety of machinery: Electro-sensitive protective equipment. Part 1:
	General requirements and tests.
ISO 12100:2010	Safety of machinery - General principles for design - Risk assess-
	ment and risk reduction.
IEC/EN60204-	Safety of machinery - Electrical equipment of machines - Part 1:
1:2006	General requirements.
EN 1088:2008	Safety of machinery - Interlocking devices associated with guards -
	Principles for design and selection.
ISO 14119:2013	
ISO 13850:2006	Safety of machinery - Emergency stop - Principles for design.
IEC/EN 62061:2005	Safety of machinery - Functional safety of safety-related electrical,
	electronic, and electronic programmable control systems.
IEC 61508-1:2010	Functional safety of electrical/electronic/programmable electronic
	safety-related systems: General requirements.
IEC 61508-2:2010	Functional safety of electrical/electronic/programmable electronic
	safety-related systems: Requirements for electrical/electronic/pro-
	grammable electronic safety related systems.
IEC 61508-3:2010	Functional safety of electrical/electronic/programmable electronic
	safety-related systems: Software requirements.
IEC 61784-3:2008	Digital data communication for measurement and control: Func-
	tional safety field buses.
2006/42/EC	Machinery Directive
2014/30/EU	Electromagnetic Compatibility Directive
2014/35/EU	Low Voltage Directive

In addition, terms used in the present document may tangentially be used as they are derived from other standards such as:

IEC 60034 series	Rotating electrical machines		
IEC 61800 series Adjustable speed electrical power drive systems			
IEC 61158 series	Digital data communications for measurement and control – Field-		
	bus for use in industrial control systems		

Finally, the term "zone of operation" may be used in conjunction with the description of specific hazards, and is defined as it is for a hazard zone or danger zone in the Machinery Directive (2006/42/EC) and ISO 12100:2010.

NOTE: The aforementioned standards may or may not apply to the specific products cited in the present documentation. For more information concerning the individual standards applicable to the products described herein, see the characteristics tables for those product references.

About This Manual

Source Documents and Software

The information provided in this manual supplements, but is not a substitute for, the product hardware manual.

Source Manuals

The latest versions of the manuals can be downloaded from the Internet at: <u>https://novantaims.com/dloads/</u>

Source EDS Files

For easier engineering, Electronic Datasheet Files and product master data are available for download from the Internet at: <u>https://novantaims.com/dloads/</u>

Graphic User Interface Software

For easier configuration, a Graphic User Interface (GUI) is available for use with Liberty MDrive (LMD) and LMD products in conjunction with the optional MD-CC501-000 USB to CANopen interface cable kit. This software is available for download from the Internet at: <u>https://novantaims.com/dloads/</u>

CANopen Configurator

The software associated with LMD CANopen products is contained within the LMD Software Suite (LSS). This software package is available for download at the Novanta IMS web site at https://novantaims.com/dloads/

Applicable module:

CANopen Configuration Interface: Graphic User Interface (GUI) for commissioning the LMD.

See the LMD Software Suite manual for installation and use instructions.

Further Reading

Recommended literature for further reading.

CAN Users and Manufacturers Organization

CiA - CAN in Automation Am Weichselgarten 26 D-91058 Erlangen

http://www.can-cia.org/

CANopen Standards

- CiA Standard 301 (CiA 301): CANopen application layer and communication profile
- CiA Standard 402 (CiA 402): Device profile for drives and motion control
- ISO 11898: Controller Area Network (CAN) for high speed communication
- EN 50325-4: Industrial communications subsystem based on ISO 11898 for controller device interfaces (CANopen)

Chapter 1 CANopen Protocol Basics

What's in this Chapter?

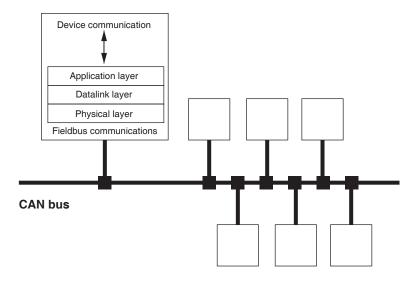
This chapter includes the following topics:

Торіс	Page
"Introduction to CANopen Technology"	11
"Communication Profile"	13
"Service Data Communication"	19
"Process Data Communication"	24
"Synchronization"	31
"Emergency Service"	33
"Network Management Services"	34

Introduction to CANopen Technology

CANopen Description Language

CANopen is a device- and manufacturer-independent description language for communication via the CAN bus. CANopen provides a common basis for interchanging commands and data between CAN bus devices.


Communication Layers

CANopen uses the CAN bus technology for data communication.

CANopen is based on the basic network services for data communication as per the ISO-OSI model. 3 layers enable data communication via the CAN bus.

- Physical Layer
- Data Link Layer
- Application Layer

Figure 1.1 - CANopen Layer Model

Physical Layer

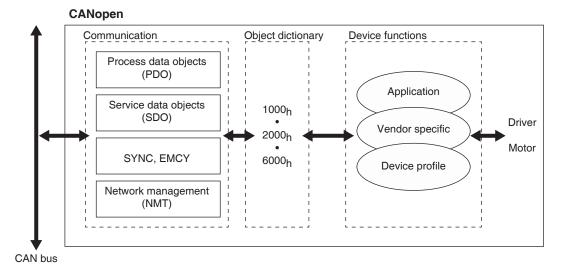
The physical layer defines the electrical properties of the CAN bus such as connectors, cable length and cable properties as well as bit coding and bit timing.

Data Link Layer

The data link layer connects the network devices. It assigns priorities to individual data packets and monitors and corrects errors.

Application Layer

The application layer uses communication objects (COB) to exchange data between the various devices. Communication objects are elementary components for creating a CANopen application.


Objects

Processes under CANopen are executed via objects. Objects carry out different tasks; they act as communication objects for data transport to the fieldbus, control the process of establishing a connection, or monitor the network devices. If objects are directly linked to the device (device specific objects), the device functions can be used and changed via these objects.

Object Dictionary

The object dictionary of each network device allows for communication between the devices. Other devices find the objects with which they can communicate in this dictionary.

Figure 1.2 - Device Model with Object Dictionary

The object dictionary contains objects for describing the data types and executing the communication tasks and device functions under CANopen.

Object Index

Each object is addressed by means of a 16 bit index, which is represented as a four-digit hexadecimal number. The objects are arranged in groups in the object dictionary. The following table shows an overview of the object dictionary supported by LMD products as per the CANopen definition.

Table 1.1 -	Object	Directory	Overview
-------------	--------	-----------	----------

Index range (hex)	Object group
1000 _h - 1FFF _h	Communications profile
2000 _h - 5FFF _h	Vendor specific objects
6000 _h - 9FFF _h	Standardized device profiles

For a list of all CANopen objects, see Section Appendix B, "Object Dictionary".

Communication Profile

CANopen manages communication between the network devices with object dictionaries and objects. A network device can use process data objects (PDO) and service data objects (SDO) to request the object data from the object dictionary of another device and, if permissible, write back modified values.

The following can be done by accessing the objects of the network devices:

- Exchange parameter values
- Start motion functions of individual CAN bus devices
- Request status information

Object Dictionary

Each CANopen device manages an object dictionary which contains the objects for communication.

Index, Subindex

The objects are addressed in the object dictionary via a 16 bit index. One or more 8 bit subindex entries for each object specify individual data fields in the object. Index and subindex are shown in hexadecimal notation with a subscript "_h".

Example

The following table shows index and subindex entries using the example of the object Homing Speeds (6098_{h}) for specifying the fast and slow speeds for homing functions.

Table 1.2 - Example Index and Subindex Entries

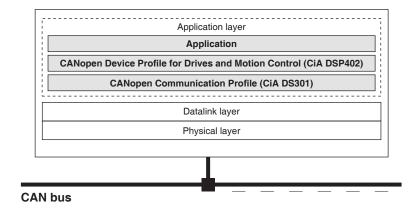
Index	Subindex	Name	Meaning		
6098 _h	00 _h	—	Number of data fields		
	01 _h	Homing speed fast	High speed during homing		
	02 _h	Homing speed slow	Low speed during homing		

Object Descriptions in the Manual

For CAN programming of a device, the objects of the following object groups are described in detail:

1xxx_h objects: Communication objects.

2xxx_h objects: Vendor-specific objects required to control the vendor specific functions of the device.


6xxx_h objects: standardized objects of the device profile.

CANopen Profiles

Standardized Profiles

Standardized profiles describe objects that are used with different devices without additional configuration. The users and manufacturers organization CAN in Automation has standard-ized various profiles. These include:

- CiA 301 communication profile
- CiA 402 device profile

Figure 1.3 - CANopen Reference Model

CiA 301 Communication Profile

The CiA 301 communication profile is the interface between device profiles and CAN bus. It was specified in 1995 under the name CiA 301 and defines uniform standards for common data exchange between different device types under CANopen.

The objects of the communication profile in the device carry out the tasks of data exchange and parameter exchange with other network devices and initialize, control, and monitor the device in the network.

CiA 402 Device Profile

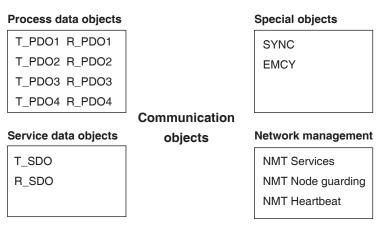
The CiA 402 device profile describes standardized objects for positioning, monitoring, and setting of drives. The tasks of the objects include:

- Device monitoring and status monitoring (Device Control)
- Standardized parameterization
- Changing, monitoring, and execution of operating modes

Vendor-specific Profiles

The basic functions of a device can be used with objects of standardized device profiles. Only vendor-specific device profiles offer the full range of functions. The objects with which the special functions of a device can be used under CANopen are defined in these vendorspecific device profiles.

Standardized Objects

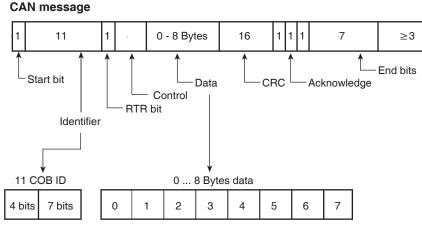

Standardized objects allow the use of the same application program for different network devices of the same device type. This requires these objects to be contained in the object dictionary of the network devices. Standardized objects are defined in the CiA 301 communication profile and the CiA 402 device profile.

Communication Objects

Overview

The communication objects are standardized with the CiA 301 CANopen communication profile. The objects can be classified into 4 groups according to their tasks.

Figure 1.4 - Communication Objects


 $T_{-} = Transmit$

 $R_{-} = Receive$

- PDOs (process data objects) for real-time transmission of process data
- SDOs (service data objects) for read and write access to the object dictionary
- Objects for controlling CAN messages:
 - 1. SYNC object (synchronization object) for synchronization of network devices
 - 2. EMCY object (emergency object) for signaling errors of a device or its peripherals.
- Network management services:
 - 1. NMT services for initialization and network control (NMT: network management)
 - 2. NMT Node Guarding for monitoring the network devices
 - 3. NMT Heartbeat for monitoring the network device's CAN Message

Data is exchanged via the CAN bus in the form of CAN messages. A CAN message transmits the communication object as well as numerous administration and control data.

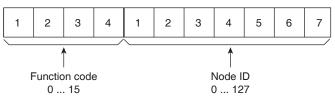
Figure 1.5 - CAN Message and Simplified CANopen Message

CANopen message (simplified)

CANopen Message

For work with CANopen objects and for data exchange, the CAN message can be represented in simplified form because most of the bits are used for error correction. These bits are automatically removed from the receive message by the data link layer of the OSI model, and added to a message before it is transmitted.

The two bit fields "Identifier" and "Data" form the simplified CANopen message. The "Identifier" corresponds to the "COB ID" and the "Data" field to the data frame (maximum length 8 bytes) of a CANopen message.


COB ID

The COB ID (**C**ommunication **OB**ject Identifier) has 2 tasks as far as controlling communication objects is concerned:

- · Bus arbitration: Specification of transmission priorities
- Identification of communication objects: An 11 bit COB identifier as per the CAN 3.0A specification is defined for CAN communication; it is comprised of 2 parts:
 - Function code, 4 bits
 - Node address (node ID), 7 bits.

Figure 1.6 - COB ID with Function Code and Node Address

COB ID

COB IDs of the Communication Objects

The following table shows the COB IDs of all communication objects with the factory settings. The column «Index of object parameters» shows the index of special objects with which the settings of the communication objects can be read or modified via an SDO.

Table 1.3 - COD IDs of Communication Objects

Communications Object	Function Code	Node Address, Node ID [1127]	COB ID Decimal (hex)	Index of Object Parameters
NMT Start/Stop Service	0000	0000000	0 (0 _h)	—
SYNC object	0001	0000000	128 (80 _h)	1005 _h 1007 _h
EMCY object	0001	x x x x x x x x	128 (80 _h) + node ID	1014 _h , 1015 _h
T_PDO1	0011	x x x x x x x x	384 (180 _h) + node ID	1800 _h
R_PDO1	0100	x x x x x x x x	512 (200 _h) + node ID	1400 _h
T_PDO2	0101	x x x x x x x x	640 (280 _h) + node ID	1801 _h
R_PDO2	0110	x x x x x x x x x	768 (300 _h) + node ID	1401 _h
T_PDO3	0111	x x x x x x x x	896 (380 _h) + node ID	1802 _h
R_PDO3	1000	x x x x x x x x	1024 (400 _h) + node ID	1402 _h
T_PDO4	1001	x x x x x x x x	1152 (480 _h) + node ID	1803 _h
R_PDO4	1010	x x x x x x x x x	1280 (500 _h) + node ID	1403 _h
R_SDO	—	x x x x x x x x x	1408 (580 _h) + node ID	-

Communications	Function	Node Address, Node	COB ID Decimal (hex)	Index of Object
Object	Code	ID [1127]		Parameters
R_SDO	—	x x x x x x x x x	1536 (600 _h) + node ID	—
NMT error control	1110	x x x x x x x x x	1792 (700 _h) + node ID	—
LMT Services	1111	110010x	2020 (7E4 _h), 2021 (7E5 _h)	—
NMT Identify Service	1111	1100110	2022 (7E6 _h)	—
NMT Services	1111	110100x	2025 (7E9 _h), 2026 (7EA _h)	

Function Code

The function code classifies the communication objects. Since the bits of the function code in the COB ID are more significant, the function code also controls the transmission priorities: objects with a lower function code are transmitted with higher priority. For example, an object with function code "1" is transmitted prior to an object with function code "3" in the case of simultaneous bus access.

Node Address

Each network device is configured before it can be operated on the network. The device is assigned a unique 7 bit node address (node ID) between 1 (01_h) and 127 ($7F_h$). The device address "0" is reserved for "broadcast transmissions" which are used to send messages to all reachable devices simultaneously.

Example

Selection of a COB ID

For a device with the node address 5, the COB ID of the communication object T_PDO1 is:

384+node ID = 384 (180_h) + 5 = 389 (185_h).Data Frame

The data frame of the CANopen message can hold up to 8 bytes of data. In addition to the data frame for SDOs and PDOs, special frame types are specified in the CANopen profile:

- Error data frame
- Remote data frame for requesting a message

The data frames contain the respective communication objects.

Communication Relationships

CANopen uses 3 relationships for communication between network devices:

- Master-slave relationship
- Client-server relationship
- Producer-consumer relationship

Master-Slave Relationship

A network master controls the message traffic. A slave only responds when it is addressed by the master.

The master-slave relationship is used with network management objects for a controlled network start and to monitor the connection of devices.

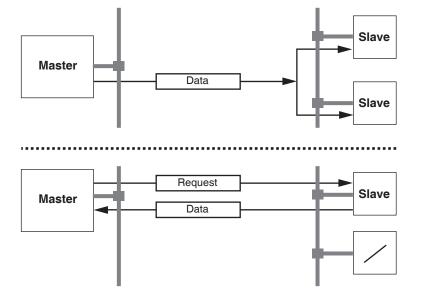
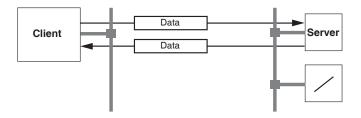


Figure 1.7 - Master - Slave Relationship

Messages can be interchanged with and without confirmation. If the master sends an unconfirmed CAN message, it can be received by a single slave or by all reachable slaves or by no slave.

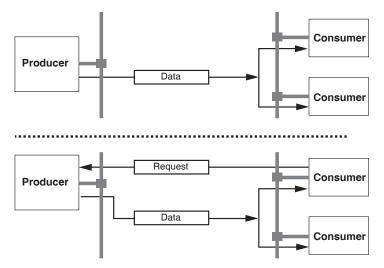

To confirm the message, the master requests a message from a specific slave, which then responds with the desired data.

Client-Server Relationship

A client-server relationship is established between 2 devices. The «server» is the device whose object dictionary is used during data exchange. The «client» addresses and starts the exchange of messages and waits for a confirmation from the server.

A client-server relationship with SDOs is used to send configuration data and long messages.

Figure 1.8 - Client - Server Relationship


The client addresses and sends a CAN message to a server. The server evaluates the message and sends the response data as an acknowledgement.

Producer-Consumer Relationship

The producer-consumer relationship is used for exchanging messages with process data, because this relationship enables fast data exchange without administration data.

A "Producer" sends data, a "Consumer" receives data.

The producer sends a message that can be received by one or more network devices. The producer does not receive an acknowledgement to the effect that the message was received. The message transmission can be triggered by:

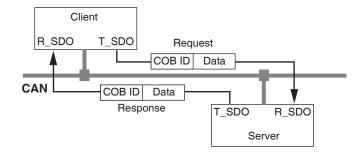
- · An internal event, for example, "target position reached"
- The synchronization object SYNC
- A request of a consumer

See "Process Data Communication" on page 24 for details on the function of the producer-consumer relationship and on requesting messages.

Service Data Communication

Overview

SDOs can be used to access the entries of an object dictionary via index and subindex. The values of the objects can be read and, if permissible, also be changed.


Every network device has at least one server SDO to be able to respond to read and write requests from a different device. A client SDO is only required to request SDO messages from the object dictionary of a different device or to change them in the dictionary.

The T_SDO of an SDO client is used to send the request for data exchange; the R_SDO is used to receive. The data frame of an SDO consist of 8 bytes.

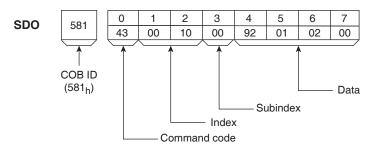
SDOs have a higher COB ID than PDOs; therefore, they are transmitted over the CAN bus at a lower priority.

SDO Data Exchange

An SDO transmits parameter data between 2 devices. The data exchange conforms to the client-server relationship. The server is the device to whose object dictionary an SDO message refers.

Figure 1.10 - SDO Message Exchange with Request and Response

Message Types

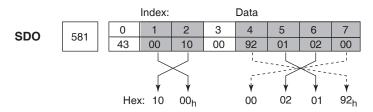

Client-server communication is triggered by the client to send parameter values to the server or to get them from the server. In both cases, the client starts the communication with a request and receives a response from the server.

SDO message

Put simply, an SDO message consists of the COB ID and the SDO data frame, in which up to 4 bytes of data can be sent. Longer data sequences are distributed over multiple SDO messages with a special protocol.

The device transmits SDOs with a data length of up to 4 bytes. Greater amounts of data such as 8 byte values of the data type «Visible String 8» can be distributed over multiple SDOs and are transmitted successively in blocks of 7 bytes.

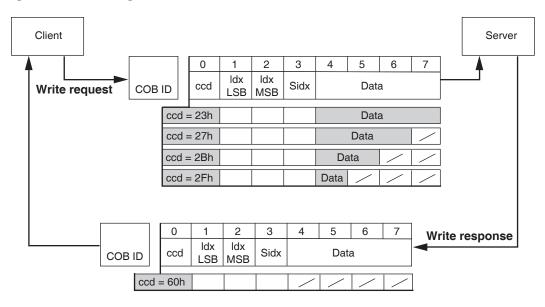
COB ID and data frame R_SDO and T_SDO have different COB IDs.


The data frame of an SDO messages consists of:

- Command code (ccd) which contains the SDO message type and the data length of the transmitted value
- Index and subindex which point to the object whose data is transported with the SDO message
- Data of up to 4 bytes

Evaluation of Numeric Values

Index and data are transmitted left-aligned in Intel, or little endian format. If the SDO contains numerical values of more than 1 byte in length, the data must be rearranged byte-bybyte before and after a transmission.



Reading and Writing Data

Writing Data

The client starts a write request by sending index, subindex, data length, and value. The server sends a confirmation indicating whether the data was correctly processed. The confirmation contains the same index and subindex, but no data.

Figure 1.13 - Writing Parameter Values

Unused bytes in the data field are shown with a slash in the graphic. The content of these data fields is not defined.

CCD Coding

The table below shows the command code for writing parameter values. It depends on the message type and the transmitted data length.

 Table 1.4 - Command Code for Writing Parameter Values

Message type		Data len	gth used		
	4 byte	3 byte	2 byte	1 byte	
Write request	23 _h	27 _h	2B _h	2F _h	Transmitting parameters
Write response	60 _h	60 _h	60 _h	60 _h	Confirmation
Error response	80 _h	80 _h	80 _h	80 _h	Error

Reading Data

The client starts a read request by transmitting the index and subindex that point to the object or part of the object whose value it wants to read.

The server confirms the request by sending the desired data. The SDO response contains the same index and subindex. The length of the response data is specified in the command code «ccd».

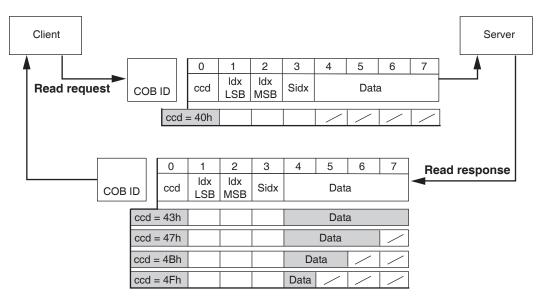


Figure 1.14 - Reading a Parameter Value

The table below shows the command code transmitting a read value. It depends on the message type and the transmitted data length.

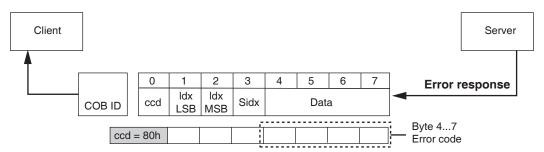

Message type Data length used 4 byte 3 byte 2 byte 1 byte 4F_h 43_h 47_h Read request 4B_h Request read value 40_h Read response 40_h 40_h 40_h Return read value 80_h 80_h Error Error response 80_h 80_h

Table 1.5 - Command Code for Transmitting a Read Value

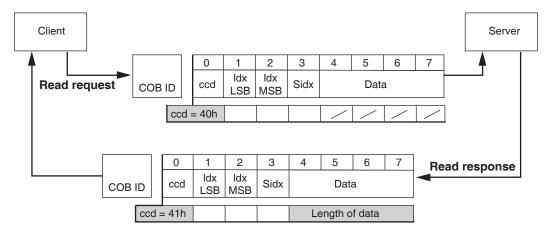
Error Response

If a message could not be evaluated, the server sends an error message. See "Messages on Device Status" on page 92, for details on the evaluation of the error message.

Reading data longer than 4 bytes

If values of more than 4 bytes are to be transmitted with an SDO message, the message must be divided into several frames. Each frame consists of 2 parts:

- · Request by the SDO client,
- Confirmation by the SDO server.


The request by the SDO client contains the command code «ccd» with the toggle bit and a data segment. The confirmation frame also contains a toggle bit in the «ccd» segment. In the first frame, the toggle bit has the value «0», in the subsequent frames it toggles between 1 and 0.

Reading Data

The client starts a read request by transmitting the index and subindex that point to the object or the object value whose value it wants to read.

The server confirms the request by transmitting index, subindex, data length, and the first 4 bytes of the requested data. The command code specifies that data of more than 4 bytes are transmitted. The command code of the read response from the server to the first message is $41_{\rm h}$.

In the next frames, the remaining data is requested and transmitted in packets of 7 bytes from the server.

CCD Coding

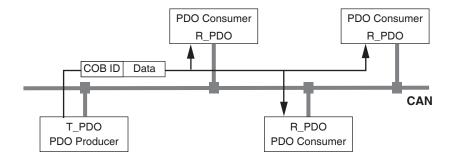
The table below shows the command code for transmitting a read value. It depends on the message type, the value of the toggle bit, the transmitted data length, and the value of the bit that indicates the end of the entire SDO message.

Table 1.6 - Command Code Data Lengths > 4 Bytes

Message type	Data length used							
	7 byte	6 byte	5 byte	4 byte	3 byte	2 byte	1 byte	
Read request Toggle Bit = 0		60 _h	60 _h		60 _h	60 _h	60 _h	Confirmation with Toggle Bit = 0
Read request Toggle Bit = 1	70 _h	70 _h	70 _h	70 _h	70 _h	70 _h	70 _h	Confirmation with Toggle Bit = 1
Read response Toggle Bit = 0	00 _h	—	—	—	—	—	—	Send parameter with Toggle Bit = 0
Read response Toggle Bit = 1	10 _h	_	_	_	_	_	_	Send parameter with Toggle Bit = 1
Read response last message Toggle Bit = 0	01 _h	03 _h	05 _h	07 _h	09 _h	0B _h	0D _h	Transmit parameter with last message and Toggle Bit = 0
Read response last message Toggle Bit = 1	11 _h	13 _h	15 _h	17 _h	19 _h	1B _h	1D _h	Transmit parameter with last message and Toggle Bit = 1
Error response	80 _h	80 _h	80 _h	80 _h	80 _h	80 _h	80 _h	Error

Refer to CiA 301 of the CiA for additional information on this procedure.

Process Data Communication


Overview

Process data objects (PDO) are used for real time data exchange of process data such as actual and reference values or the operating state of the device. Transmission is very fast because the data is sent without additional administration data and data transmission acknowledgement from the recipient is not required.

The flexible data length of a PDO message also increases the data throughput. A PDO message can transmit up to 8 bytes of data. If only 2 bytes are assigned, only 2 data bytes are sent. The length of a PDO message and the assignment of the data fields are specified by PDO mapping. See "PDO Mapping" on page 28, for additional information.

PDO messages can be exchanged between devices that generate or process data.

Figure 1.17 - PDO Data Exchange

Data exchange with PDOs follows to the producer-consumer relationship and can be triggered in 3 ways:

- · Synchronized
- Event-driven
- Asynchronous

The SYNC object controls synchronized data processing. Synchronous PDO messages are transmitted immediately like the standard PDO messages, but are only evaluated on the next SYNC. For example, several drives can be started simultaneously via synchronized data exchange.

The device immediately evaluates PDO messages that are called on request or in an eventdriven way.

The transmission type can be specified separately for each PDO with subindex 02_h (transmission type) of the PDO communication parameter. The objects are listed in Table 2.5.

PDO Message

T_PDO, R_PDO

One PDO each is available for sending and receiving a PDO message:

- T_PDO to transmit the PDO message (T: Transmit),
- R_PDO to receive PDO messages (R: Receive).

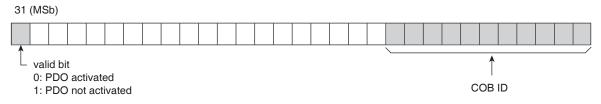
The following settings for PDOs correspond to the defaults read and set via objects of the communication profile.

The device uses 6 PDOs, 3 receive PDOs and 3 transmit PDOs. By default, the PDOs are evaluated or transmitted in an event-driven way.

PDO settings

The PDO settings can be read and changed with 8 communication objects.

Object	Meaning
1st receive PDO parameter (1400 _h)	Settings for R_PDO1
2nd receive PDO parameter (1401 _h)	Settings for R_PDO2
3rd receive PDO parameter (1402 _h)	Settings for R_PDO3
4th receive PDO parameter (1403 _h)	Settings for R_PDO4
1st transmit PDO parameter (1800 _h)	Settings for T_PDO1
2nd transmit PDO parameter (1801 _h)	Settings for T_PDO2
3rd transmit PDO parameter (1802 _h)	Settings for T_PDO3
4th transmit PDO parameter (1803 _h)	Settings for T_PDO4


Table 1.7 - PDO Communication Objects

Activating PDOs

With the default PDO settings, R_PDO1 and T_PDO1 are activated. The other PDOs must be activated first. A PDO is activated with bit 31 (valid bit) in subindex 01_h of the respective communication object:

Figure 1.18 - Activating PDOs via Subindex 01_h, Bit 31

Subindex 01h Objects 140xh, 180xh (x: 0, 1, 2)

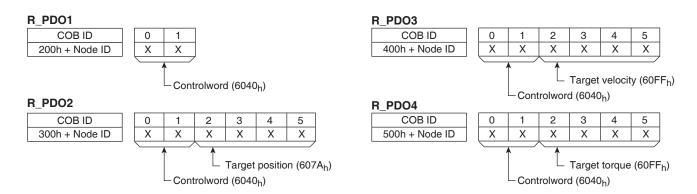
Example

Setting for R_PDO3 in object 1402h

- Subindex 01_h = 8000 04xx_h: R_PDO3 not activated
- Subindex 01_h = 0000 04xx_h: R_PDO3 activated.

Values for "x" in the example depend on the COB ID setting.

PDO Time Intervals


The time intervals «inhibit time» and «event timer» can be set for each transmit PDO.

- The time interval «inhibit time» can be used to reduce the CAN bus load, which can be the result of continuous transmission of T_PDOs. If an inhibit time not equal to zero is entered, a transmitted PDO will only be re-transmitted after the inhibit time has elapsed. The time is set with subindex 03_h.
- The time interval «event timer» cyclically triggers an event message. After the time interval has elapsed, the device transmits the event controlled T_PDO. The time is set with subindex 05_h.

Receive PDOs

The objects for R_PDO1, R_PDO2, R_PDO3 and R_PDO4 are preset. They may be remapped to suit the end-user application.

Figure 1.19 - Receive PDOs

R_PDO1

R_PDO1 contains the control word, object **controlword** (6040h), of the state machine which can be used to set the operating state of the device.

R_PDO1 is evaluated asynchronously (i.e., it is event-driven). R_PDO1 is preset.

R_PDO2

With R_PDO2, the control word and the target position of a motion command, object target position (607Ah), are received for a movement in the operating mode "Profile Position".

R_PDO2 is evaluated asynchronously (i.e., it is event-driven). R_PDO2 is preset.

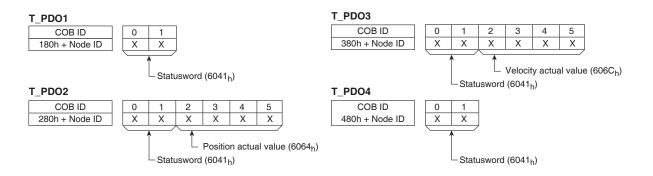
For details on the SYNC object, see "Synchronization" on page 31.

R_PDO3

R_PDO3 contains the control word and the target velocity, object **Target velocity** (60FFh), for the operating mode "Profile Velocity".

R_PDO3 is evaluated asynchronously (i.e., it is event-driven). R_PDO3 is preset.

R_PDO4


R_PDO4 contains the control word and the target torque, object **Target torque** (6071h), for the operating mode "Profile Torque" (closed loop LMD products only).

R_PDO4 is evaluated asynchronously (i.e., it is event-driven). R_PDO4 is preset. Transmit PDOs

Transmit PDOs

The objects for T_PDO1, T_PDO2 and T_PDO3 can be changed by means of PDO mapping.

Figure 1.20 - Transmit PDOs

T_PDO1

T_PDO1 contains the status word, object **statusword** (6041h), of the state machine.

T_PDO1 is transmitted asynchronously and in an event-driven way whenever the status information changes.

T_PDO2

T_PDO2 contains the status word and the actual position of the motor, object **Position actual value (6064h)**, to monitor movements in the operating mode "Profile Position".

T_PDO2 is transmitted after receipt of a SYNC object and in an event driven way.

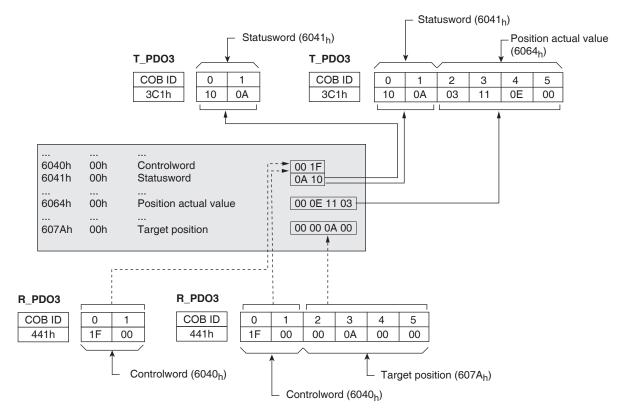
T_PDO3

T_PDO3 contains the status word and the actual velocity, object **Velocity actual value (606Ch)**, for monitoring the velocity profile in the operating mode "Profile Velocity".

T_PDO3 is transmitted asynchronously and in an event-driven way whenever the status information changes.

T_PDO4

T_PDO4 contains the status word, object statusword (6041h), of the state machine.


T_PDO4 is transmitted asynchronously and in an event-driven way whenever the status information changes.

PDO Mapping

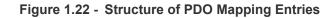
Up to 8 bytes of data from different areas of the object directory can be transmitted with a PDO message. Mapping of data to a PDO message is referred to as PDO mapping.

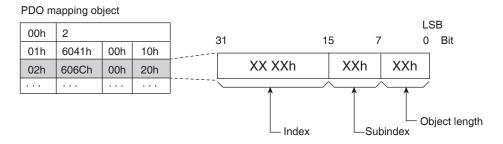
The following diagram shows the data exchange between PDOs and the object directory on the basis of two examples of objects in T_PDO3 and R_PDO3 of the PDOs.

Figure 1.21 - PDO Mapping

Dynamic PDO Mapping

The device uses dynamic PDO mapping. Dynamic PDO mapping means that objects can be mapped to the corresponding PDO using adjustable settings.


The settings for PDO mapping are defined in an assigned communication object for each PDO.


Table 1.8 - Dynamic PDO Mapping Parameters

Object	PDO mapping for:	Туре
1st receive PDO mapping (1600 _h)	R_PDO1	Dynamic
2nd receive PDO mapping (1601 _h)	R_PDO2	Dynamic
3rd receive PDO mapping (1602 _h)	R_PDO3	Dynamic
4th receive PDO mapping (1603 _h)	R_PDO4	Dynamic
1st transmit PDO mapping (1A00 _h)	T_PDO1	Dynamic
2nd transmit PDO mapping (1A01 _h)	T_PDO2	Dynamic
3rd transmit PDO mapping (1A02 _h)	T_PDO3	Dynamic
4th transmit PDO mapping (1A03 _h)	T_PDO4	Dynamic

Structure of the Entries

Up to 8 bytes of 8 different objects can be mapped in a PDO. Each communication object for setting the PDO mapping provides 4 subindex entries. A subindex entry contains 3 pieces of information on the object: the index, the subindex, and the number of bits that the object uses in the PDO.

Subindex 00_h of the communication object contains the number of valid subindex entries.

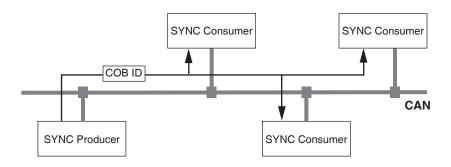
Table 1.9 - Subindex Object Length Entries

Object length	Bit value
08 _h	8 bits
10 _h	16 bits
20 _h	30 bits

PDO Mapping Objects

Table 1.10 -	Supported	PDO Mapping	Entries
--------------	-----------	--------------------	---------

Index	Sub-	Object	PDO	Data	Parameter name	
	index			type		
2009 _h	1	Read value of	T_PDO	UINT8	Out_Error	
		output error				
2010 _h	1	Read value of	T_PDO	UINT16	Analog_In_Reading	
		analog input				
2014 _h	1	Read Aux voltage	T_PDO	UINT16	AuxPower_Voltage	
		level				
2015 _h		Read +V level	T_PDO	UINT16	Vin_Voltage	
2018 _h	1	Read internal	T_PDO	INT8	Temperature_Reading	
		temperature				
2019 _h	1	Read output	T_PDO	UINT16	TempC_Bridge_Reading	
		h-bridge temperature				
2033 _h	4	Read captured posi-	T_PDO	INT32	CaptureInPositn_user	
		tion				
2741 _h	0	Read hybrid status	T_PDO	UINT8	HybridStatusByte	
		byte				
603F _h	0	Read error code	T_PDO	UINT16	ErrorCode	
6040 _h	0	Controlword	R_PDO	UINT16	Controlword	
6041 _h	0	Statusword	T_PDO	UINT16	Statusword	
6060 _h	0	Modes of operation	R_PDO	INT8	Modes_of_operation	
6061 _h	0	Read mode of opera-	T_PDO	INT8	Modes_of_operation_	
		tion			display	
6062 _h	0	Read position value	T_PDO	INT32	Position_demand_val-	
					ue_user	

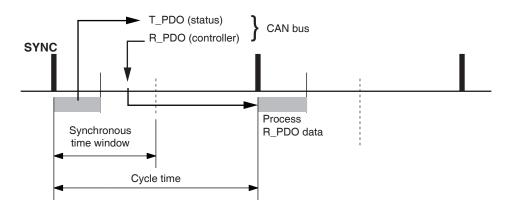

Index	Sub-	Object	PDO	Data	Parameter name
	index			type	
6063 _h	0	Position actual value	T_PDO	INT32	Position_actual_val-
					ue_inc
6064 _h	0	Position actual value	T_PDO	INT32	Position_actual_val-
					ue
606C _h	0	Velocity actual value	T_PDO	INT32	Velocity_actual_val-
					ue
6071 _h	0	Target torque	R_PDO	INT16	Target_torque
607A _h	0	Target position	R_PDO	INT32	Target_position
607E _h	0	Polarity	R_PDO	UINT8	Polarity
6081 _h	0	Profile velocity	R_PDO	UINT32	Profile_velocity
6082 _h	0	Initial velocity	R_PDO	UINT32	Initial_velocity
6083 _h	0	Profile acceleration	R_PDO	UINT32	Profile_acceleration
6084 _h	0	Profile deceleration	R_PDO	UINT32	Profile_deceleration
6086 _h	0	Motion profile type	R_PDO	INT16	Motion_profile_type
60FD _h	0	Digital inputs	T_PDO	UINT32	Digital_inputs
60FE _h	1	Digital outputs	R_PDO	UINT32	Digital_outputs
60FF _h	0	Target velocity	R_PDO	INT32	Target_velocity

Synchronization

The synchronization object SYNC controls the synchronous exchange of messages between network devices for purposes such as the simultaneous start of multiple drives.

The data exchange conforms to the producer-consumer relationship. The SYNC object is transmitted to all reachable devices by a network device and can be evaluated by the devices that support synchronous PDOs.

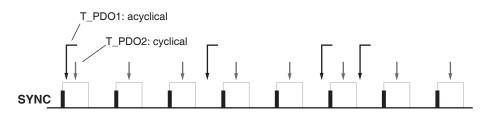
Figure 1.23 - SYNC Message



Time Values for Synchronization

Two time values define the behavior of synchronous data transmission:

- The cycle time specifies the time intervals between 2 SYNC messages. It is set with the object Communication cycle period(1006h).
- The synchronous time window specifies the time span during which the synchronous PDO messages must be received and transmitted. The time window is defined with the object Synchronous window length (1007h).


Synchronous Data Transmission

From the perspective of a SYNC recipient, in one time window the status data is transmitted first in a T_PDO, then new control data is received via an R_PDO. The control data is only processed when the next SYNC message is received. The SYNC object itself does not transmit data.

Cyclic and Acyclic Data Transmission

Synchronous exchange of messages can be cyclic or acyclic.

Figure 1.25 - Cyclic and Acyclic Transmission

In the case of cyclic transmission, PDO messages are exchanged continuously in a specified cycle, for example with each SYNC message.

If a synchronous PDO message is transmitted acyclically, it can be transmitted or received at any time; however, it will not be valid until the next SYNC message.

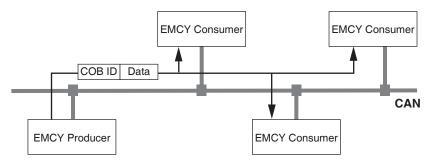
Cyclic or acyclic behavior of a PDO is specified in the subindex transmission type (02_h) of the corresponding PDO parameter, for example, in the object 1st receive PDO parameter $(1400_h:02_h)$ for R_PDO1.

COB ID, SYNC Object

For fast transmission, the SYNC object is transmitted unconfirmed and with high priority.

The COB ID of the SYNC object is set to the value 128 (80_h) by default. The value can be changed after initialization of the network with the object COB-ID SYNC Message (1005_h) .

"Start" PDO


With the default settings of the PDOs, R_PDO1 ... R_PDO4 and T_PDO1 ... T_PDO4 are received and transmitted asynchronously. T_PDO2 ... T_PDO3 are transmitted additionally after the event timer has elapsed. The synchronization allows an operating mode to be

started simultaneously on multiple devices so that, for example, the feed of a portal drive with several motors can be synchronized.

Emergency Service

The Emergency Service signals internal device errors via the CAN bus. The error message is transmitted to the network devices with an Emergency Object (EMCY) according to the consumer-producer relationship.

Figure 1.26 - Error Message via EMCY Objects

Boot-up Message

The communication profile CiA 301, version 3.0, defines an additional task for the EMCY object: sending a boot-up message. A boot-up message informs the network devices that the device that transmitted the message is ready for operation in the CAN network.

The boot-up message is transmitted with the COB ID 700_{h} + node ID and one data byte (00_{h}) .

Error Evaluation and Handling

EMCY Message

If an internal device error occurs, the device switches to the operating state 9 Fault as per the CANopen state machine. At the same time, it transmits an EMCY message with error register and error code.

Figure 1.27 - EMCY Message

Bytes 0, 1 - Error code, value is also saved in the object Error code (603Fh) Byte 2 - Error register, value is also saved in the object Error register (1001h) Bytes 3, 4 - Reserved

Byte 5 - PDO: Number of the PDO

Bytes 6, 7 - Vendor-specific error code

COB ID

The COB ID for each device on the network supporting an EMCY object is determined on the basis of the node address:

COB ID = Function code EMCY object (80_h) + node ID

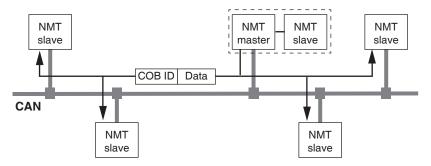
The function code of the COB ID can be changed with the object **COBID emergency (1014h)**.

Error Register and Error Code

The error register contains bit-coded information on the error. Bit 0 remains set as long as an error is active. The remaining bits identify the error type. The exact cause of error can be determined on the basis of the error code. The error code is transmitted in Intel format as a 2 byte value; the bytes must be reversed for evaluation.

See Section Appendix A "Diagnostics and Troubleshooting" on page 91 for a list of the error messages and error responses by the device as well as remedies.

Error Memory


The device saves the error register in the object **Error register** (1001h) and the last error that occurred in the object **Error code** (603Fh).

Network Management Services

Network management (NMT) is part of the CANopen communication profile; it is used to initialize the network and the network devices and to start, stop, and monitor the network devices during operation on the network.

NMT services are executed in a master-slave relationship. The NMT master addresses individual NMT slaves via their node address. A message with node address «0» is broadcast to all reachable NMT slaves simultaneously.

Figure 1.28 - NMT Services via Master - Slave Relationship

The LMD and LMD devices can only take on the function of an NMT slave.

NMT Services

NMT services can be divided into 2 groups:

- Services for device control, to initialize devices for CANopen communication and to control the behavior of devices during operation on the network
- Services: for connection monitoring

NMT Services for Device Control

NMT State Machine

The NMT state machine describes the initialization and states of an NMT slave during operation on the network.

In the figure above, the communication objects available for use in the specific network state are shown on the right.

Initialization

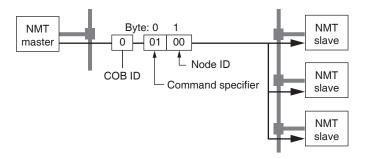
An NMT slave automatically runs through an initialization phase after the supply voltage is switched on (power on) to prepare it for CAN bus operation. On completion of the initialization, the slave switches to the operating state "Pre Operational" and sends a boot-up message. From now on, an NMT master can control the operational behavior of an NMT slave on the network via 5 NMT services, represented in the figure above by the letters A to E.

Table 1.11 - NMT State Machine Transitions

NMT service	Transition	Meaning	
Start remote node	А	Transition to operating state "Operational"	
(Start network			
node)		Start normal operation on the network	
Stop remote node	В	Transition to operating state "Stopped"	
(Stop network		Stops communication of the network device on the network. If connection	
node)		monitoring is active, it remains on. If the power stage is enabled (operating state	
		"Operation Enabled" or "Quick Stop"), an error of error class 2 is triggered. The	
		motor is stopped and the power stage disabled.	

NMT service	Transition	Meaning		
Enter Pre-Opera- tional (Transition to	С	Transition to operating state "Pre-Operational"		
"Pre-Operational")		The communication objects except for PDOs can be used. The operating state "Pre-Operational" can be used for configuration via SDOs:		
		- PDO mapping		
		- Start of synchronization		
		- Start of connection monitoring		
Reset node (Reset node)	D	Transition to operating state "Reset application"		
,		Load stored data of the device profiles and automatically switch via operating		
		state "Reset communication" to "Pre-Operational".		
Reset communica- tion (Reset com-	E	Transition to operating state "Reset communication"		
munication data)		Load stored data of the communication profile and automatically transition to		
, í		operating state "Pre-Operational". If the power stage is enabled (operating state		
		"Operation Enabled" or "Quick Stop"), an error of error class 2 is triggered. The motor is stopped and the power stage disabled.		

Persistent Data Memory


When the supply voltage is switched on (power on), the device loads the saved object data from the non-volatile Electrically Erasable Programmable Read Only Memory (EEPROM) for persistent data to the RAM.

NMT Message

The NMT services for device control are transmitted as unconfirmed messages with the COB ID = 0. By default, they have the highest priority on the CAN bus.

The data frame of the NMT device service consists of 2 bytes.

Figure 1.30 - NMT Message

The first byte, the "Command specifier", indicates the NMT service used.

Command specifier	NMT service	Transition
1 (01 _h)	Start remote node	A
2 (02 _h)	Stop remote node	В
128 (80 _h)	Enter pre-opera- tional	С
129 (81 _h)	Reset node	D
130 (82 _h)	Reset communica- tion	E

Table 1.12 - NMT Command Specifiers.

The second byte addresses the recipient of an NMT message with a node address between 1 and 127 $(7F_h)$. A message with node address "0" is broadcast to all reachable NMT slaves.

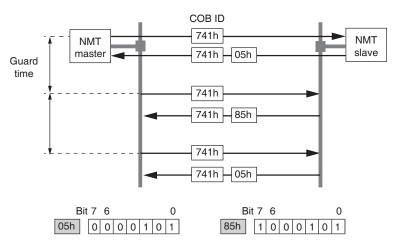
NMT Services for Connection Monitoring

Connection monitoring checks the communication status of network devices. 3 NMT services for connection monitoring are available:

- · «Node guarding» for monitoring the connection of an NMT slave
- «Life guarding» for monitoring the connection of an NMT master
- «Heartbeat» for unconfirmed connection messages from network devices.

Node Guarding / Life Guarding

COB ID


The communication object **NMT error control (700h+node-Id)** is used for connection monitoring. The COB ID for each NMT slave is determined on the basis of the node address:

COB ID = function code **NMT error control (700h) + node-Id**.

Structure of the NMT Message

After a request from the NMT master, the NMT slave responds with one data byte.

Figure 1.31 - Acknowledgement of the NMT Slave

Bits 0 to 6 identify the NMT state of the slave:

- 4 (04_h): "Stopped"
- 5 (05_h): "Operational"
- 127 (7F_h): "Pre-Operational"

After each "guard time" interval, bit 7 switches toggles between "0" and "1", so the NMT master can detect and ignore a second response within the "guard time" interval. The first request when connection monitoring is started begins with bit 7 = 0.

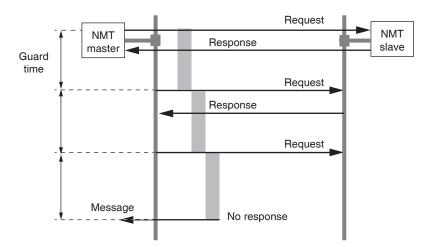
Connection monitoring must not be active during the initialization phase of a device. The status of bit 7 is reset as soon as the device runs though the NMT state "Reset communication".

Connection monitoring remains active in the NMT state "Stopped".

Configuration

Node Guarding/Life Guarding is configured via:

- Guard time (100C_h)
- Life time factor (100D_h)

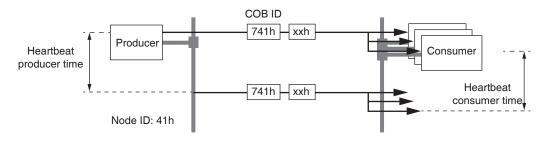

Connection Error

The NMT master signals a connection error to the master program if:

- the slave does not respond within the «guard time» period, or
- the NMT state of the slave has changed without a request by the NMT master.

The following figure shows an error message after the end of the third cycle because of a missing response from an NMT slave:

Figure 1.32 - «Node Guarding» and «Life Guarding» with Time Intervals


Heartbeat

The optional Heartbeat protocol replaces the node guarding/life guarding protocol. It is recommended for new device versions.

A heartbeat producer transmits a heartbeat message cyclically at the frequency defined in the object **Producer heartbeat time (1017h)**. One or several consumers can receive this message. **Producer heartbeat time (1016h) = 0** deactivates heartbeat monitoring.

The relationship between producer and consumer can be configured with objects. If a consumer does not receive a signal within the period of time set with **Consumer heartbeat time (1016h)**, it generates an error message (heartbeat event). Consumer heartbeat time (**1016h**) = 0 deactivates monitoring by a consumer.

Figure 1.33 - «Heartbeat» Monitoring

Data byte for NMT state evaluation of the "Heartbeat" producer:

- 0 (00_h): "Boot-Up"
- 4 (04_h): "Stopped"
- 5 (05_h): "Operational"
- 127 (7F_h): "Pre-Operational"

Time Intervals

The time intervals are set in increments of 1 ms steps; the values for the consumer must not be less than the values for the producer. Whenever the "Heartbeat" message is received, the time interval of the producer is restarted.

Start of Monitoring

"Heartbeat" monitoring starts as soon as the time interval of the producer is greater than zero. If "Heartbeat" monitoring is already active during the NMT state transition to "Pre-Operational", "Heartbeat" monitoring starts with sending of the boot-up message. The boot-up message is a "Heartbeat" message with one data byte 00_h .

Devices can monitor each other via "Heartbeat" messages. They assume the function of consumer and producer at the same time.

Chapter 2 Commissioning

What's in this Chapter?

This chapter includes the following topics:

Торіс	Page
"Commissioning the Device"	41
"Address and Baud Rate"	41
"Commissioning via CANopen Configuration Utility"	42
"Commissioning via Layer Setting Services"	42
"Commissioning via Switch Mode Global"	43
"Commissioning via Switch Mode Selective"	46

The product is unable to detect an interruption of the network link if connection monitoring is not active.

A WARNING

LOSS OF CONTROL

- Verify that connection monitoring is on.
- Set the shortest, practical monitoring time cycles to detect communication interruptions as quickly as possible.

Failure to follow these instructions can result in death, serious injury or equipment damage.

A WARNING

UNINTENDED OPERATION

- Do not write values to reserved parameters.
- Do not write values to parameters unless you fully understand the function.
- Run initial tests without coupled loads.
- Verify that the system is free and ready for the movement before changing parameters.
- Verify the use of the word sequence for fieldbus communication.
- Do not establish a fieldbus connection unless you have fully understood the communication principles.
- Only start the system if there are no persons or obstructions in the zone of operation.

Failure to follow these instructions can result in death, serious injury or equipment damage.

Commissioning the Device

For installation in the network, the device must first be properly installed (mechanically and electrically) and commissioned. Install the device as per the related hardware manual.

Commissioning the device can be accomplished via one of two methods:

- Using the CANopen Configuration Utility, part of the LSS, which may be downloaded from our website at: https://novantaims.com/.
- 2. By using Layer Setting Services, as defined in CiA 305: Layer Setting Services

Two conditions must be fulfilled in order for a CANopen device to operate on a network:

- It must have a unique Node ID
- · It must have the same communication baud rate as all other devices on the network

Address and Baud Rate

Up to 64 devices can be addressed in one CAN bus network branch and up to 127 devices in the extended network. Each device is identified by a unique address or Node ID. The default Node ID for an LMD is 41_h.

The default baud rate is 1 MBaud (1000 kbps).

Each device must be assigned a unique node address (i.e., any given node address may be assigned only once in the network).

The baud rate must match the baud rate setting of the network into which the device is being installed.

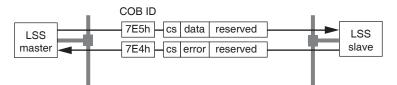
Commissioning via CANopen Configuration Utility

The NODE ID and BAUD rate may be configured using the CANopen Configuration Utility, which is part of the LSS.

Instructions for installing and using this tool to commission the LMD CANopen device are available in the LSS Manual.

Both the software and user manual are available for download at: <u>https://novantaims.com/dloads/</u>

Commissioning via Layer Setting Services


The device may be commissioned using CAN Layer Setting Services. Reference CiA 305.

The scope of Layer Setting Services is to allow the Node ID and communication baud rate to be read or written through the network.

The Node ID and baud rate must be set using Layer Setting Service commands. It is recommended that the parameters be set prior to the installation of the device into a network.

Layer Setting Service messages are 8 bytes in length.

The Layer Setting Service message consists of a COB IDs specific to the Layer Setting Service master and Layer Setting Service slave.

The command specifier identifies the action to be taken.

COB ID

Layer Setting Service commands use two specific COB IDs to request and respond to Layer Setting Service commands:

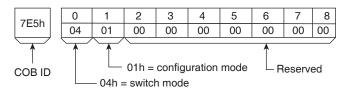
- 07E5_h COB ID of the Layer Setting Service slave device
- 07E4_h COB ID of the Layer Setting Service master device to which message responses are sent

Switch Modes

There are two methods of initiating communications with the device to be commissioned:

- Switch mode global: can set all connected devices into configuration mode. Can be used to set the baud rate of multiple connected devices, can only be used to set the Node ID if one device is connected.
- Switch mode selective: can be used to set the parameters of a single device in the network using vendor specific objects such as the serial number to communicate directly to the device.

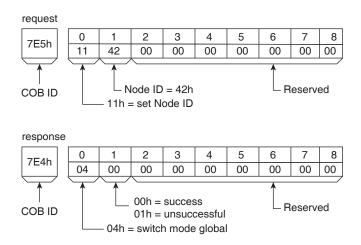
The switch mode commands are used to set the device into either operational or configuration mode. In order to make changes to the parameters it must be in configuration mode.


Commissioning via Switch Mode Global

Procedure

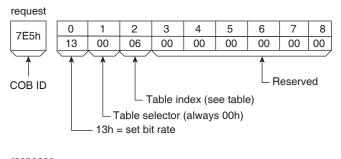
The following procedure will step through configuring the Node ID and baud rate parameters from the perspective of a single device connected to the Layer Setting Service master.

1. Transmit the command to the device setting it into switch mode global - configuration mode:


Figure 2.2 - Setting Global - Configuration Mode

This will place the device in configuration mode. This is an unacknowledged Layer Setting Service; there will be no response.

2. Set the new Node ID (42 $_{h}$ used in the following example).



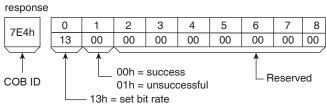
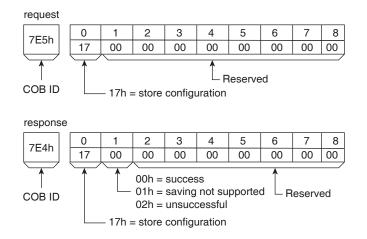

3. Set the desired baud rate using the table below as a reference (for example purposes 50 kbps will be used):

Table index	Baud rate (kbps)				
00 _h	1000 (default)				
01 _h	800*				
02 _h	500				
03 _h	250				
04 _h	125				
05 _h	100				
06 _h	50				
07 _h	20				
08 _h	10				
*Not available if using MD-CC500-000 USB to					
CANopen converter cable					

Table 2.1 - Baud Rate Settings



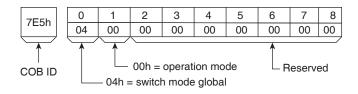

4. Save the changed parameters using the "Store configuration" service (17_h).

Figure 2.5 - Save Configuration Example

5. Change the mode from configuration to operational.

Figure 2.6 - Change Mode Example

- 6. The new Node ID is now active. To make the new bit rate active, cycle power to the device.
- 7. The device is now commissioned and ready to be placed in a network having a Node ID of 42_h and a bitrate of 50 kbps.

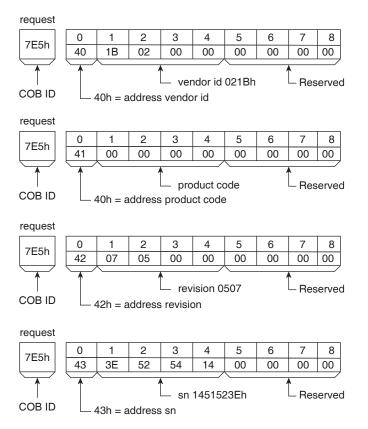
Commissioning via Switch Mode Selective

Using switch mode selective it is possible to isolate a single unit installed on a CANopen network and commission it alone by sending out a four-part signature.

The signature consists of:

- VendorID = 0800005A_h
- Product code = 00
- Revision number = 507_h
- Serial number

The first three parameters are identical throughout the product line. The serial number may be retrieved from the label on the device or from the Indexes $1018_{h}4$ or $5002_{h}1$.


Using only the numeric portion of the serial, convert it to a 4 byte hex number, for example:

341070398 = 1454523E

Procedure

1. Send the four parameters to place the desired device in configuration mode.

2. Perform steps 2 – 7 of the Switch Mode Global procedure to commission the device.

What's in this Chapter?

The section "Operation" describes the basic operating states, operating modes, and functions of the device.

This chapter includes the following topics:

Торіс	Page
"Operating States"	48
"Control and Status"	51
"Option Code Objects"	54
"Supported Modes of Operation"	58
"Profile Position Mode"	59
"Position, Velocity, and Acceleration Objects"	63
"Profile Velocity Mode"	68
"Profile Velocity Mode Objects"	70
"Homing Mode"	72
"Homing Mode Objects"	73
"Torque Mode (Closed Loop Models Only)"	79
"Torque Mode Objects"	81
"Cyclic Synchronous Position"	82
"Position Control Function"	83
"Factors"	87
"Optional Application FE (General I/O)"	89

AWARNING

UNINTENDED OPERATION

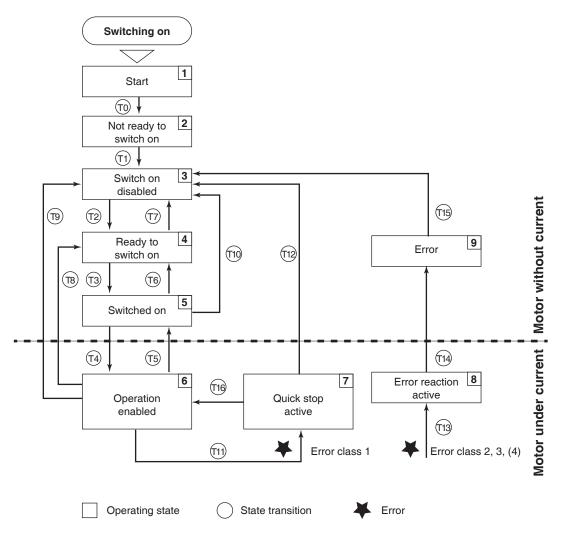
- Do not write values to reserved parameters.
- Do not write values to parameters unless you fully understand the function.
- Run initial tests without coupled loads.
- Verify that the system is free and ready for the movement before changing parameters.
- Verify the use of the word sequence for fieldbus communication.
- Do not establish a fieldbus connection unless you have fully understood the communication principles.

• Only start the system if there are no persons or obstructions in the zone of operation. Failure to follow these instructions can result in death, serious injury or equipment damage.

Operating States

State Diagram

After switching on and when an operating mode is started, the product goes through a number of operating states.


The state diagram (state machine) shows the relationships between the operating states and the state transitions.

The operating states are monitored and influenced by internal monitoring functions and system functions such as temperature monitoring or current monitoring.

Graphical Representation

The state diagram is represented as a flowchart:

Figure 3.1 - State Diagram

Operating States

Refer to Table 3.1 for an explanation of each operating states shown in Figure 3.1.

Table 3.1 - Operating States

	Operating state	Description			
1	Start	Controller supply voltage switched on			
		Electronics are initialized			
2	Not Ready To Switch	The power stage is not ready to switch on			
	On				
3	Switch On Disable	Impossible to enable the power stage			
4	Ready To Switch On	The power stage is ready to switch on.			
5	Switched On	Power stage is switched on			
6	Operation Enabled	Power stage is enabled			
		Selected operating mode is active			
7	Quick Stop Active	"Quick Stop" is being executed			
8	Error Reaction Active	Error response is active			
9	Error	Error response terminated,			
		Power stage is disabled			

Error Class

The product triggers an error response if an error is detected. Depending upon the severity of the error, the device responds in accordance with one of the following error classes:

Table 3.2 - Error Class

Class	Response	Description
0	Advisory	A monitoring function has detected a problem.
		No interruption of the movement.
1	"Quick Stop"	Motor stops with "Quick Stop", the power stage remains
		enabled.
2	"Quick Stop" with	Motor stops with "Quick Stop", the power stage is dis-
	switch-off	abled after standstill has been achieved.
3	Recoverable error	The power stage is immediately disabled without stop-
		ping the motor first.
4	Unrecoverable error	The power stage is immediately disabled without stop-
		ping the motor first. The error can only be reset by
		switching off the product.

Error Response

The state transition T13 (error class 2, 3, or 4) initiates an error response as soon as an internal occurrence signals an error to which the device must react.

Table	3.3	-	Error	Response
-------	-----	---	-------	----------

Class	State from -> to	Description
2	x -> 8	Stop movement with "Quick Stop"
		Power stage is disabled
3, 4, or	x -> 8 -> 9	Power stage is disabled immediately,
Safety func-		even if "Quick Stop" is still active.
tion STO		

When an error is triggered, such as by a temperature sensor, the product cancels the running movement and performs an error response, such as stopping with «Quick Stop» or disabling the power stage. Subsequently, the operating state changes to 9 (Error). To exit the Error operating state, the cause of the error must be remedied and an Error Reset must be executed. Once the Error Reset is executed, the error message will clear.

Control and Status

Controlling the State Machine (Controlword 6040_h)

Controlword 6040h is a mandatory index which sets the operating states and modes of the state machine.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
mfg.	specif	ic			reserved	op mode specific	halt	error reset	op mo	ode spe	cific	enable op	quick stop	enable voltage	switch on
MS	b														LSb

Command		Bits of t	Transitions			
	Bit 7	Bit 3	Bit 2	Bit 0		
Shutdown	0	X	1	1	0	2, 6, 8
Switch on	0	0	1	1	1	3
Switch on + enable operation	0	1	1	1	1	3 + 4
Disable voltage	0	X	X	0	Х	7, 9, 10, 12
Quick stop	0	X	0	1	Х	7, 10, 11
Disable operation	0	0	1	1	1	5
Enable operation	0	1	1	1	1	4, 16
Error reset	0 -> 1	X	X	X	Х	15

Table 3.4 -	Controlword	Value	Range	

Op mode	Bits of the control word						
	Bit 8 Bit 6 Bit 5 Bit 4						
Profile position	Halt	Abs/rel	Change set	New setpoint			
Profile velocity	Halt	Reserved	Reserved	Reserved			
Homing	Halt	Reserved	Reserved	Homing start			

Table 3.5 - 6040_h Object Description

Index	6040 _h
Name	Control word
Object code	VAR
Data type	Unsigned16
Category	Mandatory

Table 3.6 - 6040_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	Yes
Value range	See the Command and Op mode tables above
Default value	Device and operation mode specific

Indication of the Operating State (Statusword 6041:0_h)

The **status word 6041:0h** provides information on the operating state of the device and the processing status of the operating mode

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
mfg. sp	pecific	op mo	de specific	Int limit active	target reached	remote	mfg. specific	warn	stat	us bits	voltage enabled	statu	us bits		
MSb															Sb

Status Bits

Bit 6: Switch on disabled

- Bit 5: Quick stop
- Bit 3: Error
- Bit 2: Operation enabled
- Bit 1: Switch on
- Bit 0: Ready to switch on

Table 3.7 - Statusword Status Bit States

Status		Bits of the status word							
	Bit 6	Bit 5	Bit 3	Bit 2	Bit 1	Bit 0			
Not Ready To Switch On	0	Х	0	0	0	0			
Switch On Disabled	1	Х	0	0	0	0			
Ready To Switch On	0	1	0	0	0	1			
Switched On	0	1	0	0	1	1			
Operation Enabled	0	1	0	1	1	1			
Quick Stop Active	0	0	0	1	1	1			
Error Reaction Active	0	X	1	1	1	1			
Error	0	Х	1	0	0	0			

Bit 4: Voltage Enabled

Bit 4=1 indicates whether the DC bus voltage is correct. If the voltage is missing or too low, the device does not transition from operating state 3 to operating state 4.

Bit 5: Quick Stop Active

When reset, this bit indicates that the drive is reacting on a quick stop request. Bits 0, 1, and 2 of the **statusword** must be set to 1 to indicate that the drive is capable to regenerate. The setting of the other bits indicates the status of the drive (e.g. the drive is performing a quick stop as result of a reaction to a recoverable error. The error bit is set as well as bits 0, 1, and 2).

Bit 7: Advisory

A drive advisory is present if bit 7 is set. The cause means no error but a state that has to be mentioned (e.g., temperature limit, job refused). The status of the drive does not change. The cause of this advisory may be found by reading the error code parameter. The bit is set and reset by the device.

Bit 8: Manufacturer Specific

This bit may be used by a drive manufacturer to implement any manufacturer specific functionality. This bit is not used by LMD products.

Bit 9: Remote

If bit 9 is set, then parameters may be modified via the CAN-network, and the drive executes the content of a command message. If the bit remote is reset, then the drive is in local mode and will not execute the command message. The drive may transmit messages containing valid actual values like a **position_actual_value**, depending on the actual drive configuration. The drive will accept accesses via service data objects (SDOs) in local mode.

Bit 10: Target Reached

If bit 10 is set by the drive, then a setpoint has been reached (e.g., torque, speed, or position, depending on the **modes_of_operation**). The change of a target value by software alters this bit. If **quickstop_option_code** is 5, 6, 7, or 8, this bit must be set, when the quick stop operation is finished and the drive is halted. If Halt occurred and the drive has halted then this bit is set too.

Bit 11: Internal Limit Active

This bit is set by the drive and indicates that an internal limitation is active (e.g., **position range limit**).

Op mode	Bits of the control word						
	Bit 13	Bit 12					
Profile position	Following error	Set point acknowledge					
Profile velocity	Max slippage error	Speed					
Homing	Homing error	Homing attained					

Bits 12-13: Operation Mode Specific

Bit 14-15: Unused

Option Code Objects

Abort Connection (6007_h)

This object indicates what action is performed when one of the following events occurs: bus-off, heartbeat, life guarding, NMT stopped state entered, reset application, and reset communication

Table 3.8 - 6007_h Object Description

Index	6007 _h
Name	Abort connection
Object code	VAR
Data type	Integer16
Category	Optional

Table 3.9 - 6007_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	Yes
Value range	0 to 3
Default value	0

Table 3.10 - Abort Connection Option Code

Value	Meaning					
0	No action					
1	Error signal					
2	Disable voltage command					
3	Quick stop command					

Error Code (603F_h)

This object provides the error code of the last error that occurred in the drive device. This object provides the same information as the lower 16-bit of sub-index 01_h of the pre-defined error field (1003h).

Table 3.11 - 603F_h Object Description

Index	603F _h
Name	Error code
Object code	VAR
Data type	Unsigned16
Category	Optional

Table 3.12 - 603F_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	Yes
Value range	Unsigned16
Default value	0

Quick Stop (605A_h)

This object indicates what action is performed when the quick stop function is executed. The slow down ramp is the deceleration value of the used mode of operations.

Table 3.13 - 605A_h Object Description

Index	605A _h
Name	Quick stop
Object code	VAR
Data type	Integer16
Category	Optional

Table 3.14 - 605A_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	No
Value range	0 to 6
Default value	2

Table 3.15 - Quick Stop Option Codes

Value	Meaning
0	Disable drive function
1	Slow down on slow down ramp and transit into Switch On Disabled
2	Slow down on quick stop ramp and transit into Switch On Disabled
3	Slow down on current limit and transit into Switch On Disabled
4	Slow down on voltage limit and transit into Switch On Disable
5	Slow down on slow down ramp and stay in Quick Stop Active
6	Slow down on quick stop ramp and stay in Quick Stop Active

Shutdown (605B_h)

This object indicates what action is performed if there is a transition from 'Operation Enabled' state to 'Ready To Switch On' state. The slow down ramp is the deceleration value of the used mode of operations.

Table 3.16 - 605B_h Object Description

Index	605B _h
Name	Shutdown
Object code	VAR
Data type	Integer16
Category	Optional

Table 3.17 - 605B_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	No
Value range	0 to 1
Default value	0

Table 3.18 - Shutdown Option Codes

Value	Meaning
0	Disable drive function (Switch off the drive power stage)
1	Slow down with slow down ramp; disable the drive function

Disable Operation (605Ch)

This object indicates what action is performed if there is a transition from 'Operation Enabled' state to 'Switched On' state. The slow down ramp is the deceleration value of the used mode of operation.

Table 3.19 - 605C_h Object Description

Index	605C _h
Name	Disable operation
Object code	VAR
Data type	Integer16
Category	Optional

Table 3.20 - 605C_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	No
Value range	0 to 1
Default value	0

Table 3.21 - Disable Operation Option Codes

Value	Meaning
0	Disable drive function (Switch off the drive power stage)
1	Slow down with slow down ramp; disable of the drive function

Halt (605D_h)

This object indicates what action is performed if there is a transition from 'Operation Enabled' state to 'Switched On' state. The slow down ramp is the deceleration value of the used mode of operations.

Index	605D _h
Name	Halt
Object code	VAR
Data type	Integer16
Category	Optional

Table 3.23 - 605D_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	No
Value range	1 or 2
Default value	2

Table 3.24 - Halt Option Codes

Value	Meaning
1	Slow down on slow down ramp and stay in Operation Enabled
2	Slow down on quick stop ramp and stay in Operation Enabled

Error Reaction (605E_h)

This object indicates what action is performed when an error is detected in the PDS. The slow down ramp is the deceleration value of the used mode of operations.

Table 3.25 - 605E_h Object Description

Index	605E _h
Name	Halt
Object code	VAR
Data type	Integer16
Category	Optional

Table 3.26 - 605E_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	No
Value range	0 to 2
Default value	2

Table 3.27 -	Error	Reaction	Option	Codes
--------------	-------	----------	--------	-------

Value	Meaning			
0	Disable drive function, motor is free to rotate			
1	Slow down on slow down ramp			
2	Slow down on quick stop ramp			

Supported Modes of Operation

The function of the product depends on the selected modes of operation. It is not possible to operate the modes in parallel. The mode of operation must be selected. An example of exclusive functions are Profile Velocity and Profile Position modes. Supported modes are:

- 1. Profile position
- 2. Homing mode
- 3. Profile velocity

This product allows dynamic switching between various operation modes.

The mode of operation is set or read using Mode of Operation (6060_h) and Mode of Operation display (6061_h) .

Mode of Operation (6060_h)

This object indicates the requested operation mode.

Table 3.28 - 6060_h Object Description

Index	6060 _h			
Name	Mode of operation			
Object code	VAR			
Data type	Integer8			
Category	Optional			

Table 3.29 - 6060_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	No
Value range	1, 3 or 6
Default value	1

Table 3.30 - Mode of Operation

Value	Meaning		
1	Profile Position		
3	Profile Velocity		
6	Homing		

Mode of Operation Display (6061_h)

The Modes of Operation Display represents the current mode of operation. The meaning of the returned value corresponds to that of the Modes of Operation option code (index $6060_{\rm h}$).

Table 3.31 - 6061_h Object Description

Index	6061 _h			
Name	lode of operation display			
Object code	VAR			
Data type	Integer8			
Category	Optional			

Table 3.32 - 6061_h Entry Description

Sub-index	00 _h
Access	ro
PDO mapping	Yes
Value range	1, 3, or 6 (Refer to Mode of Operation table in the "Mode of Operation (6060h)" section above)
Default value	1

Supported Drive Modes (6502_h)

This object provides information on the supported drive modes.

31	16	15	10	9	7	6	5	4	3	2	1	0
				8								
Mfg. spe	cific	Reserved		ns	Cyclic sync position	ns	Homing	ns	Profile torque	Profile velocity	ns	Profile position
MSb												LSb

ns = not supported

Table 3.33 - 6502_h Object Description

Index	6502 _h			
Name	Supported drive modes			
Object code	VAR			
Data type	Unsigned32			
Category	Optional			

Table 3.34 - 6502_h Entry Description

Sub-index	00 _h
Access	ro
PDO mapping	No
Value range	Unsigned32
Default value	0000025 _h

Profile Position Mode

Overview

A target_position is applied to the trajectory generator. It is generating a position_demand_value for the position control loop described in the position control function section. These two function blocks are optionally controlled by individual parameter sets. At the input to the trajectory generator, parameters may have optional limits applied before being normalized to internal units. Normalized parameters are denoted with an asterisk. The simplest form of a trajectory generator is just to pass through a **target_position** and to transform it to a **position demand value** with internal units (increments) only.

Figure 3.2 - Trajectory Generator for Profile Position Block Diagram

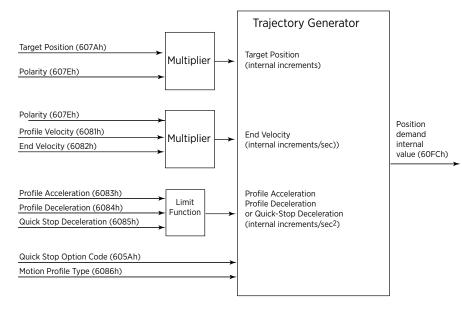


Table 3.35 - Input Data Objects for Profile Position:

Object	Name	Description
607A _h	target_position	Defines the targeted absolute or relative position
		for a move
607E _h	polarity	Sets the polarity for position or speed commands
6081 _h	profile_velocity	Sets the velocity for profile position motion
6082 _h	initial_velocity	Sets the velocity upon reaching target
6083 _h	profile_acceleration	Sets the acceleration for profile position and
		profile velocity
6084 _h	profile_deceleration	Sets the deceleration for profile position and
		profile velocity
6085 _h	<pre>quick_stop_decel</pre>	Sets the deceleration for quick stop active

Table 3.36 - Output Data Objects for Profile Position:

Object	Name	Description
607A _h	position_demand_value	Displays the motor position

Functional Description

There are two different ways to apply target_positions to a drive, which are supported by this device profile.

1. Set of set-points:

After reaching the target_position the drive unit immediately processes the next target_position which results in a move where the velocity of the drive normally is not reduced to zero after achieving a set-point.

2. Single set-point:

After reaching the target_position the drive unit signals this status to a host computer and then receives a new set-point. After reaching a target_position the velocity normally is reduced to zero before starting a move to the next set-point.

The two modes are controlled by the timing of the bits **new_set-point** and **change_ set_immediately** in the controlword and **set-point_acknowledge** in the **statusword**.

These bits allow the set up a request-response mechanism in order to prepare a group of set-points while another set is still processed in the drive unit. This minimizes reaction times within a control program on a host computer. The following graphic and table shows the set-point transmission from the host and host bit rates:

Figure 3.3 - Set-Point Transmission from Host

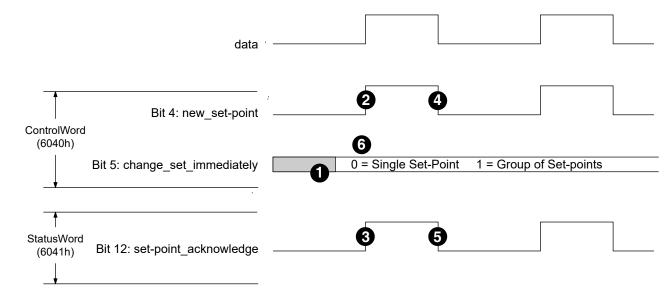
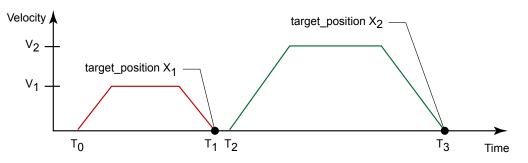
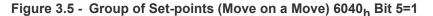
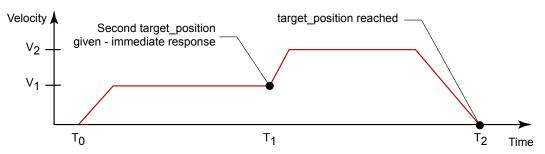



 Table 3.37 - Set-point Transmission from Host Bit States

Bit state #	Meaning
(1)	Single set-point is expected by device
(2)	Host signals "data is valid" new set-point = 1
(3)	Device response: sets bit 12, set-point acknowledge = 1
(4)	Data is validated, host may release new set-point
(5)	Device response: sets bit 12, set-point acknowledge = 0
	Device ready to receive new data
(6)	Indicates state of change_set_immediately = 1


Figure 3.3, Figure 3.4, and Figure 3.5 illustrate the difference between the "group of setpoints" mode and the "single set-point" mode. The initial status of the bit **change_set_ immediately** in the controlword determines which mode is used. Trapezoidal moves are used as this is the only **motion profile type** the LMD CANopen supports.


If the bit **change_set_immediately** is "0" (shaded area in Figure 3.3) a single setpoint is expected by the drive (1). After data is applied to the drive, a host signals that the data is valid by changing the bit **new_setpoint** to "1" in the controlword (2). The drive responds with **set-point_acknowledge** set to "1" in the statusword (3) after it is recognized and has buffered the new valid data. Now the host may release **new_setpoint** (4) and afterwards the drive signals with **set-point_acknowledge** equal "0" its ability to accept new data again (5). In , this mechanism results in a velocity of zero after ramping down in order to reach a **target_position** X₁ at T₁. After signaling to the host that the set-point has been reached as described above, the next **target_position** X₂ is processed at T₂ and reached at T₃. The following graphic shows the Single Set-point Mode (Move After a Move) 6040_h Bit 5=0.

With **change_set_immediately** set to "1" (6), symbolized by the clear area in Figure 3.3, the host advises the drive to apply a new set-point immediately after reaching the last one. The relative timing of the other signals is unchanged. This behavior causes the drive to already process the next set-point X_2 and to keep its velocity when it reaches the **tar-get_position** X_1 at T_1 . The drive then moves immediately to the already calculated next **target position** X_2 .

Controlword Definition for Profile Position

15 9	8	7	6	5	4	3 0
See Table 3.4 on page 51	halt	See Table 3.4 on page 51	abs/rel	change set immediately	new set point	See Table 3.4 on page 51

Table 3.38 - Profile Position Mode Controlword (6040_h) Bit State Meanings

Bit	Name	Value	Meaning	
4	New set-point	0	Does not assume target position	
		1	Assume target position	
5	Change set	0	Finish the actual positioning and then start the next posi-	
	immediately		tioning	
		1	Interrupt the actual positioning and start the next posi-	
			tioning	
6	abs/rel	0	Target position is an absolute value	
		1	Target position is a relative value	
8	Halt	0	Execute positioning	
		1	Stop motion with profile deceleration	

Statusword Definition for Profile Position

15 14	13	12	11	10	9 0
See Table 3.7 on page 52	following error	set-point acknowledge	See Table 3.7 on page 52	target reached	See Table 3.7 on page 52

Table 3.39 - Profile Position Mode Statusword (6041_h) Bit State Meanings

Bit	Name	Value	Meaning	
10	Target reached	0	Halt=0: Target position not reached	
			Halt=1: Axis decelerating	
		1	Halt=0: Target position reached	
			Halt=1: Axis velocity is 0	
12	Set-point	0	Trajectory generator has not assumed the positioning	
	acknowledge		values yet	
		1	Trajectory generator has assumed the positioning	
			values	
13	Following error	0	No following error	
		1	Following error	

Position, Velocity, and Acceleration Objects

607A_h Target Position

The target position is the position that the drive should move to in position profile mode using parameters such as velocity, acceleration, deceleration, motion profile type, etc. The target position is given in terms of 51,200 units per motor shaft revolution. The target position will be interpreted as absolute or relative depending on the absolute-relative flag (bit 6) in the controlword.

Table 3.40 - 607A_h Object Description

Index	607A _h
Name	Target position
Object code	VAR
Data type	Integer32
Category	Optional

Table 3.41 - 607A_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	Yes
Value range	8000 0000 _h to 7FFF FFFF _h
Default value	0000 0000 _h

607E_h Polarity

Position demand value and position actual value are multiplied by 1 or -1, depending on the value of the polarity flag.

7	6	5 0
position polarity	velocity polarity	reserved

Table 3.42 - 607E_h Object Description

Index	607E _h
Name	Polarity
Object code	VAR
Data type	Unsigned8
Category	Optional

Table 3.43 - 607E_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	Yes
Value range	Unsigned8
Default value	00 _h

6081_h Profile Velocity

The profile velocity is the velocity normally attained at the end of the acceleration ramp during a profiled move and is valid for both directions of motion. The profile velocity is given in steps per second.

Table 3.44 - 6081_h Object Description

Index	6081 _h
Name	Profile velocity
Object code	VAR
Data type	Unsigned32
Category	Optional

Table 3.45 - 6081_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	Yes
Value range	Unsigned32
Default value	512000 _d

6082_h Initial Velocity

The initial velocity defines the velocity which the drive must have upon reaching the target position. Normally, the drive stops at the target position (i.e., the **initial_velocity** = 0). The initial velocity is given in the same units as profile velocity.

Table 3.46 - 6082_h Object Description

Index	6082 _h
Name	Initial Velocity
Object code	VAR
Data type	Unsigned32
Category	Optional

Table 3.47 - 6082_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	Yes
Value range	Unsigned32
Default value	51200 _d

6083_h Profile Acceleration

Profile acceleration is given in steps/sec²

Table 3.48 - 6083_h Object Description

Index	6083 _h	
Name	Profile acceleration	
Object code	VAR	
Data type	Unsigned32	
Category	Optional	

Table 3.49 - 6083_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	Yes
Value range	Unsigned32
Default value	100000 _d

6084_h Profile Deceleration

Profile deceleration is given in steps/sec²

Table 3.50 - 6084_h Object Description

Index	6084 _h	
Name	Profile deceleration	
Object code	VAR	
Data type	Unsigned32	
Category	Optional	

Table 3.51 - 6084_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	Yes
Value range	Unsigned32
Default value	100000 _d

6085_h Quick Stop Deceleration

This object indicates the configured deceleration used to stop the motor when the quick stop function is activated and the quick stop code object (**Idx 605Ah**) is set to 2 or 4. The quick stop deceleration is also used if the error reaction code object (**Idx 605Eh**) is 2 and the halt option code object (**Idx 605Dh**) is 2. The value is given in the same physical unit as profile acceleration object (**Idx 6083h**).

Table 3.52 - 6085_h Object Description

Index	6085 _h	
Name	Quick stop deceleration	
Object code	VAR	
Data type	Unsigned32	
Category	Optional	

Table 3.53 - 6085_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	Yes
Value range	Unsigned32
Default value	200000 _d

6086_h Motion Profile Type

The motion profile type is used to select the type of motion profile used to perform a move. The represented devices are fixed at value 0: linear ramp (trapezoidal profile)

Table 3.54 - 6085_h Object Description

Index	6085 _h	
Name	Motion profile type	
Object code	VAR	
Data type	Integer16	
Category	Optional	

Table 3.55 - 6085_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	Yes
Value range	0 _d
Default value	0 _d

Profile Position Application Example

The represented device(s) support relative and absolute moves to position. Using either relative or absolute moves, it is possible to select (by the controlword data) if the target position should be reached before another target position is allowed (finish first) or if the product should execute a newly received target position even if still in motion (immediate).

The following example sets typical motion profile commands a system would configure¹, enabling the motor power² and the four different move types³ supported in profile position mode using SDOs with Node ID41_h.

All values shown are hexadecimal.

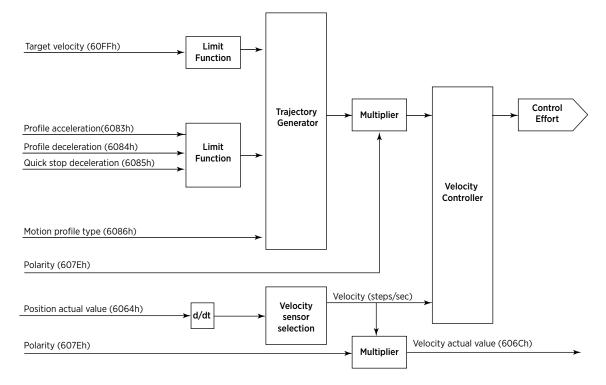
¹ Typical motion profile commands could be set each time on power up from host or set using a configuration file and stored to non-volatile memory (NVM) once.

² Enabling the motor power only has to be done once on power up.

³ The Control Word data selects the move type.

ID	RTR	Data String	Action
		Typical mot	ion parameters
0641	00	2F 04 22 00 50 00 00 00	Set run current to 80%
0641	00	23 84 60 00 40 42 OF 00	Set deceleration to 1M steps/sec ²
0641	00	23 83 60 00 40 42 OF 00	Set acceleration to 1M steps/sec ²
0641	00	23 81 60 00 00 D0 07 00	Set max velocity to 512000 steps/sec
		Enable motor power	- CiA 402 state machine
0641	00	2B 40 60 00 06 00 00 00	Ready to switch on
0641	00	2B 40 60 00 07 00 00 00	Switched on
0641	00	2B 40 60 00 0F 00 00 00	Operation enable
		Set to profile	e position mode
0641	00	2F 60 60 00 01 00 00 00	Set to profile position mode
	Perfo	rm absolute move, finish b	pefore performing additional moves
0641	00	23 7A 60 00 30 75 00 00	Set target position to 30000 steps
0641	00	2B 40 60 00 1F 00 00 00	Set control word bit 4 to 1
0641	00	2B 40 60 00 0F 00 00 00	Set control word bit 4 to 0
		Perform absolute n	nove, move immediate
0641	00	23 7A 60 00 B8 0B 00 00	Set target position to 3000 steps
0641	00	2B 40 60 00 3F 00 00 00	Set control word bit 4 to 1
0641	00	2B 40 60 00 2F 00 00 00	Set control word bit 4 to 0
	Perfo	rm relative move, finish b	efore performing additional moves
0641	00	23 7A 60 00 A0 86 01 0	Set target position to 100000
0641	00	2B 40 60 00 5F 00 00 00	Set control word bit 4 to 1
0641	00	2B 40 60 00 4F 00 00 00	Set control word bit 4 to 0
	Perform relative move, move immediate		
0641	00	23 7A 60 00 B8 0B 00 00	Set target position to 3000 steps
0641	00	2B 40 60 00 7F 00 00 00	Set control word bit 4 to 1
0641	00	2B 40 60 00 6F 00 00 00	Set control word bit 4 to 0

Table 3.56 - Profile Position Mode Application Example


Profile Velocity Mode

Overview

The profile velocity mode covers the following sub-functions:

- · Demand value input via trajectory generator
- Velocity capture using position sensor or velocity sensor
- · Velocity control function with appropriate input and output signals
- Monitoring of the profile velocity using a window-function
- · Monitoring of velocity actual value using a threshold

Figure 3.6 - Profile Velocity Control Function

Controlword Definition for Profile Velocity

15 9	8	7	6 4	3 0
See Table 3.4 on page 51	halt	See Table 3.4 on page 51	reserved	See Table 3.4 on page 51

Table 3.57 - Profile Velocity Mode Controlword (6040_h) Bit State Meanings

Bit	Name	Value	Meaning		
8	Halt	0	Execute the motion		
		1	Stop axis		

Statusword Definition for Profile Velocity

15 14	13	12	11	10	9 0
See Table 3.7 on page 52	max slippage error	speed	See Table 3.7 on page 52	target reached	See Table 3.7 on page 52

Table 3.58 - Profile Velocity Mode Statusword (6041_h) Bit State Meanings

Bit	Name	Value	Meaning	
10	Target	0	Halt=0: Target position not reached	
	reached		Halt=1: Axis decelerating	
		1	Halt=0: Target position reached	
			Halt=1: Axis velocity is 0	
12	Speed	0	Speed is not equal to 0	
		1	Speed is equal to 0	
13	Max slip-	0	Maximum slippage not reached	
	page error	1	Maximum slippage reached	

Profile Velocity Mode Objects

606C_h Velocity Actual Value

This object provides the actual velocity value derived either from the velocity sensor or the position sensor. The value is given in microsteps per second.

Table 3.59 - 606C_h Object Description

Index	606C _h		
Name	Velocity actual value		
Object code	VAR		
Data type	Integer32		
Category	Optional		

Table 3.60 - 606C_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	Yes
Value range	Integer32
Default value	0000 0000 _h

60F8_h Maximum Slippage

This object indicates the configured maximum slippage of an asynchronous motor. When the maximum slippage has been reached, the corresponding bit 13 max slippage error in the statusword is set to 1. The reaction of the drive device, when the max slippage error occurs, is manufacturer-specific. This value is given in microsteps.

Table 3.61 - 60FF_h Object Description

Index	60FF _h			
Name	Maximum slippage			
Object code	VAR			
Data type	Integer32			
Category	Optional			

Table 3.62 - 60FF_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	Yes
Value range	Integer32
Default value	512 _d

60FF_h Target Velocity

The Target Velocity is the input to the trajectory generator and the value is given in microsteps/second.

Table 3.63 - 60FF_h Object Description

Index	60FF _h			
Name	Target velocity			
Object code	VAR			
Data type	Integer32			
Category	Optional			

Table 3.64 - 60FF_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	Yes
Value range	8000 0000 _h to 7FFF FFFF _h
Default value	0000 0000 _h

Profile Velocity Application Example

The represented device(s) supports the ability to move in velocity mode. Once in Profile Velocity Mode, any new target velocity will be executed immediately.

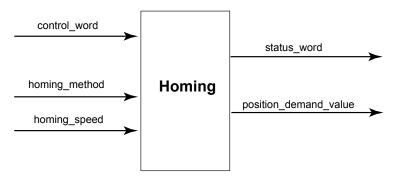
The below example sets typical motion profile commands a system would configure¹, enabling the motor power² and sending a new target velocity using SDOs with Node ID41_h.

All values shown are hexadecimal.

Table 3.65 - Profile Velocity Mode Application Example

ID	RTR	Data String	Action			
	Typical motion parameters					
0641	00	2F 04 22 00 50 00 00 00	Set run current to 80%			
0641	00	23 84 60 00 40 42 OF 00	Set deceleration to 1M steps/sec ²			
0641	00	23 83 60 00 40 42 OF 00	Set acceleration to 1M steps/sec ²			
0641	00	23 81 60 00 00 D0 07 00	Set max velocity to 512000 steps/sec			
	Enable motor power - CiA 402 state machine					
0641	00	2B 40 60 00 06 00 00 00	Ready to switch on			
0641	00	2B 40 60 00 07 00 00 00	Switched on			
0641	00	2B 40 60 00 0F 00 00 00	Operation enable			
	Set to profile velocity mode					
0641	0641 00 2F 60 60 00 03 00 00 00 Set to profile velocity mode					
	Send new target velocity					
0641	00	23 FF 60 00 50 C3 00 00	Set target velocity 50000 steps/sec			

2 Enabling the motor power only has to be done once on power up.


¹ Typical motion profile commands could be set each time on power up from host or set using a configuration file and stored to NVM once.

Homing Mode

Overview

This subsection describes the method by which a drive seeks the home position (also called the datum, reference point, or zero point). There are various methods of achieving this using limit switches at the ends of travel or a home switch (zero point switch) in mid-travel. Most of the methods also use the index (zero) pulse train from an incremental encoder.

Figure 3.7 - The Homing Function

Input Data Description

The speeds and method of homing can be specified. There are two homing speeds. In a typical cycle, the faster speed is used to find the home switch and the slower speed is used to find the index pulse. Discretion is allowed in the use of these speeds as the response to the signals is dependent on the hardware used.

Output Data Description

There is no output data except for those bits in the statusword which return the status or result of the homing process and the demand to the position control loops.

Controlword Definition for Homing Mode

15 9	8	7	6 5	4	3 0
Table 3.4 on page 51	halt	Table 3.4 on page 51	reserved	homing operation start	Table 3.4 on page 51

Table 3.66 -	Homing Mode	Controlword	(6040 _h)	Bit State Meanings

Bit	Name	Value	Meaning	
4	Homing	0	Execute the motion	
	operation	0 ⇒ 1	Start homing mode	
start	start	1	Homing mode active	
		1 ⇒ 0	Interrupt homing mode	
8	Halt	0	Execute the instruction of bit 4	
		1	Stop axis	

Statusword Definition for Homing Mode

15 14	13	12	11	10	9 0
Table 3.7 on page 52	homing error	homing attained	Table 3.7 on page 52	target reached	Table 3.7 on page 52

Table 3.67 - Homing Mode Statusword (6041_h) Bit State Meanings

Bit	Name	Value	Meaning
10	Target	0	Halt=0: Target position not reached
	reached		Halt=1: Axis decelerating
		1	Halt=0: Target position reached
			Halt=1: Axis velocity is 0
12 Homing At- 0 Homing mode not yet complete		Homing mode not yet complete	
	tained	1	Homing mode carried out successfully
13 Homing 0 No homing error		No homing error	
	error	1	Homing error

Homing Mode Objects

607C_h Homing Offset

This object indicates the configured difference between the zero position for the application and the machine home position (found during homing). During homing, the machine home position is found. Once the homing is completed, the zero position is offset from the home position by adding the home offset to the home position. All subsequent absolute moves are taken relative to this new zero position. If this object is not implemented, then the home offset is regarded as zero. The value of this object is given in microsteps. Negative values indicate the opposite direction.

Figure 3.8 - The Homing Offset

Table 3.68 - 607Ch Object Description

Index	607C _h
Name	Homing offset
Object code	VAR
Data type	Unsigned32
Category	Optional

Table 3.69 - 607C_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	Yes
Value range	Unsigned32
Default value	0 _d

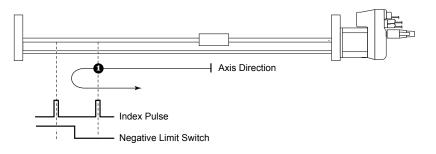
6098_h Homing Method

The homing method object determines the method that will be used during homing.

Index	6098 _h
Name	Homing method
Object code	VAR
Data type	Integer8
Category	Optional

Table 3.70 - 6098_h Object Description

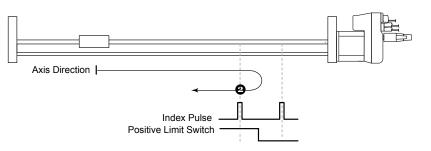
Table 3.71 -	6098 _h	Entry	Description
--------------	-------------------	-------	-------------


Sub-index	00 _h
Access	rw
PDO mapping	Yes
Value range	0 _d (no homing) 1 – 35 _d (method)
Default value	0 _d

Functional Description of Homing Methods

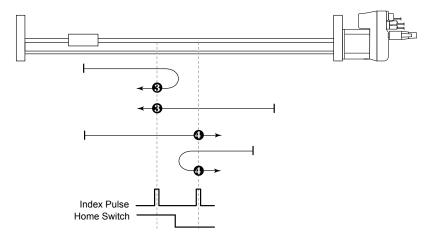
Method 1: Homing on the negative limit switch and index pulse

Using this method the initial direction of movement is leftward if the negative limit switch is inactive (here shown as low). The home position is at the first index pulse to the right of the position where the negative limit switch becomes inactive.



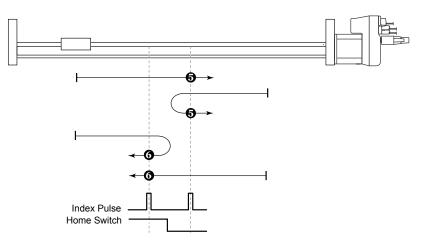
Method 2: Homing on the positive limit switch and index pulse

Using this method the initial direction of movement is rightward if the positive limit switch is inactive (here shown as low). The position of home is at the first index pulse to the left of the position where the positive limit switch becomes inactive.


Figure 3.10 - Homing on the Positive Limit Switch and Index Pulse

Methods 3 and 4: Homing on the positive home switch and index pulse

Using methods 3 or 4, the initial direction of movement is dependent on the state of the home switch. The home position is at the index pulse to either the left or the right of the point where the home switch changes state. If the initial position is set so that the direction of movement must reverse during homing, the point at which the reversal takes place is anywhere after a change of state of the home switch.



Methods 5 and 6: Homing on the negative home switch and index pulse

Using methods 5 or 6, the initial direction of movement is dependent on the state of the home switch. The home position is at the index pulse to either the left or the right of the point where the home switch changes state. If the initial position is set so that the direction of movement must reverse during homing, the point at which the reversal takes place is anywhere after a change of state of the home switch.

Methods 7 to 14: Homing on the Home Switch and Index Pulse

These methods use a home switch which is active over only portion of the travel, in effect the switch has a 'momentary' action as the axle's position sweeps past the switch.

Using methods 7 to 10, the initial direction of movement is to the right, and using methods 11 to 14, the initial direction of movement is to the left except if the home switch is active at the start of the motion. In this case the initial direction of motion is dependent on the edge being sought. The home position is at the index pulse on either side of the rising or falling edges of the home switch, as shown in the following two diagrams.

Figure 3.13 - Homing on the Home Switch and Index Pulse - Positive Initial Move

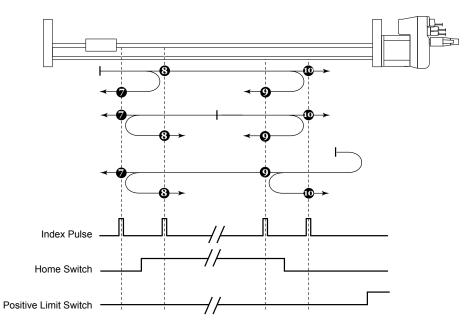
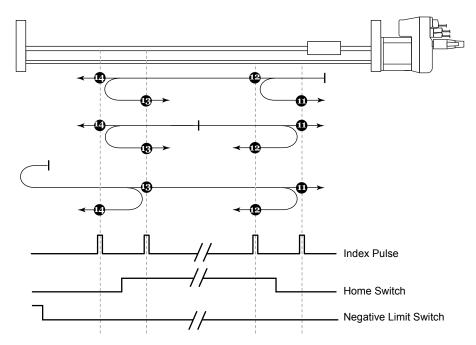
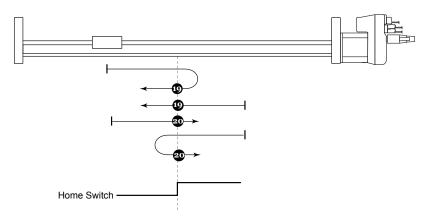



Figure 3.14 - Homing on the Home Switch and Index Pulse - Negative Initial Move

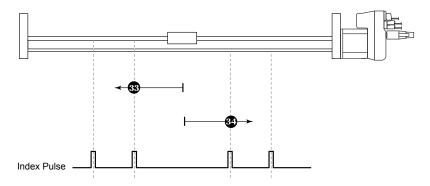

Methods 15 and 16: Reserved

These methods are reserved for future expansion of the homing mode.

Methods 17 to 30: Homing without an index pulse

These methods are similar to methods 1 to 14 except that the home position is not dependent on the index pulse but only Dependent on the relevant home or limit switch transitions. For example methods 19 and 20 are similar to methods 3 and 4 as shown in the following diagram.

Figure 3.15 - Homing Without an Index Pulse


Methods 31 and 32: Reserved

These methods are reserved for future expansion of the homing mode.

Methods 33 and 34: Homing on an index pulse

Using methods 33 or 34, the direction of homing is negative or positive respectively. The home position is at the index pulse found in the selected direction.

Figure 3.16 - Homing on an Index Pulse

Method 35: Homing on the current position

In method 35 the current position is taken to be the home position.

6099_h Homing Speeds

The homing speeds object determines the fast and slow speeds that will be used during homing.

Table 3.72 - 6099_h Object Description

Index	6098 _h
Name	Homing speeds
Object code	ARRAY
Data type	Unsigned32
Category	Optional

Table 3.73 - 6099_h Entry Description

Sub-index	00 _h
Name	Number of entries
Access	ro
PDO mapping	—
Value range	—
Default value	02 _h

Sub-index	01 _h
Name	Homing speed fast
Access	rw
PDO mapping	—
Value range	0000 0000 _h to 7FFF FFFF _h
Default value	102400 _d

Sub-index	02 _h
Name	Homing speed slow
Access	rw
PDO mapping	_
Value range	0000 0000 _h to 7FFF FFFF _h
Default value	6400 _d

Homing Mode Application Example

Homing Mode – demonstrates home method 18 decimal using Service Data Objects (SDOs).

Devices represented by this manual support the ability to move in homing mode.

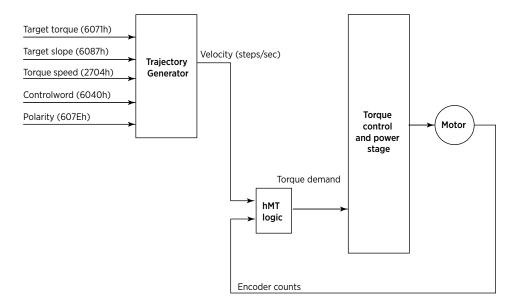
The below example sets typical motion profile commands which a system would configure¹, enabling the motor power² and executing a homing function using SDOs with Node ID 41_{h} .

All values shown are hexadecimal.

¹ Typical motion profile commands could be set each time on power up from host or set using a configuration file and stored to NVM once.

² Enabling the motor power only has to be done once on power up.

ID	RTR	Data String	Action		
	Typical motion parameters				
0641	00	2F 04 22 00 50 00 00 00	Set run current to 80%		
0641	00	23 84 60 00 40 42 OF 00	Set deceleration to 1M steps/sec ²		
0641	00	23 83 60 00 40 42 OF 00	Set acceleration to 1M steps/sec ²		
0641	00	23 81 60 00 00 D0 07 00	Set max velocity to 512000 steps/sec		
		Enable motor power - C	CiA 402 state machine		
0641	00	2B 40 60 00 06 00 00 00	Ready to switch on		
0641	00	2B 40 60 00 07 00 00 00	Switched on		
0641	00	2B 40 60 00 0F 00 00 00	Operation enable		
		Set to hom	ing mode		
0641	00	2F 60 60 00 06 00 00 00	Set to homing mode		
		Configure I/O and	homing method		
0641	00	22 00 20 01 00 00 00 00	Set I/O as inputs		
0641	00	22 00 20 02 00 00 00 00	Set I/O as sinking		
0641	00	22 00 20 04 01 00 00 00	Set I1 as polarity		
0641	00	22 02 20 01 01 00 00 00	Set I1 as home switch		
0641	00	22 06 20 01 0A 00 00 00	Set I1 filter to 10ms		
		Set homing method,	offset and speeds		
0641	00	22 98 60 00 13 00 00 00	Homing Method 18 decimal		
0641	00	2F 98 20 00 01 00 00 00	Apply home offset to pos counter		
0641	00	22 7C 60 00 00 00 00 00	Home offset = 0		
0641	00	22 99 60 01 00 C8 00 00	Home speed fast		
0641	00	22 99 60 02 00 14 00 00	Home speed slow		
		Start ho	oming		
0641	00	2B 40 60 00 1F 00 00 00	Start homing		
	After home switch toggles				
0641	00	2B 40 60 00 00 00 00 00	Stop homing		


Torque Mode (Closed Loop Models Only)

Overview

The profile torque mode allows the LMD to transmit the target torque value, which is processed via the trajectory generator and the hMTechnology logic.

The axis will ramp to the **TARGET_TORQUE** (6071h) as specified by the **TORQUE_ RAMP** (6087h).

The manufacturer-specific **TORQUE_SPEED** (2704h) specifies the axis velocity at which the **TARGET TORQUE** will be maintained.

Figure 3.17 - Profile Torque Mode

Controlword Definition for Profile Torque Mode

	15 9	8	7	6	4	3	0
See Table 3.4 on page 51 halt		See Table 3.4 on page 51	reserved		See Table 3.4	on page 51	

Table 3.75 - Profile Torque Mode Control Word (6040h) Bit State Meanings

Bit	Value	Meaning
8	0	The motion is executed 8 or continued
	1	1 Axis is stopped according to the halt option code (605Dh)

Statusword Definition for Profile Torque Mode

15	14	13	12	11	10	9	0
See Table 3.7 o	on page 52	reserved		See Table 3.7 on page 52	Target reached	See Table 3.7	on page 52

Table 3.76 - Profile Torque Mode Status Word (6041h) Bit State Meanings

Bit	Value	Meaning	
10	0	Halt (Bit 8 in statusword) = 0: Target torque not reached	
		Halt (Bit 8 in statusword) = 1: Axis decelerates	
	1	Halt (Bit 8 in statusword) = 0: Target torque reached	
		Halt (Bit 8 in statusword) = 1: Velocity of axis is 0	

Torque Mode Objects

Object 6071_h: Target Torque

This object indicates the configured input value for the torque controller in profile torque mode. The value is given per thousand of rated torque.

Table 3.77 - 6071_h Object Description

Index	6071 _h
Name	Target torque
Object code	VAR
Data type	Integer16
Category	Mandatory

Table 3.78 - 6071_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	Yes
Value range	-1000 _d to 1000 _d
Default value	0 _d

Object 6077_h: Torque Actual Value

Provides the actual value of the torque. It corresponds to the instantaneous torque in the motor. The value is given per thousand of rated torque.

Table 3.79 - 6077_h Object Description

Index	6077 _h
Name	Torque actual value
Object code	VAR
Data type	Integer16
Category	Optional

Table 3.80 - 6077_h Entry Description

Sub-index	00 _h
Access	ro
PDO mapping	Yes
Value range	-1000 _d to 1000 _d
Default value	0 _d

Object 6087_h: Torque Slope

This object indicates the configured rate of change of torque. The value is given in units of per thousand of rated torque per second.

Table 3.81 - 6087_h Object Description

Index	6087 _h
Name	Torque slope
Object code	VAR
Data type	Unsigned32
Category	Mandatory

Table 3.82 - 6087_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	Yes
Value range	Unsigned32
Default value	1000 _d

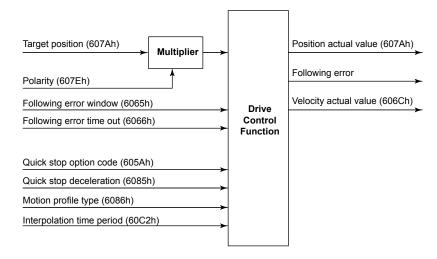
Profile Torque Example

This example will enter profile torque and set the target torque, speed, and torque ramp.

Table 3.83 - Profile Torque Application Example

I	D R	TR	Data String	Action
06	41 00		2F 60 60 00 04 00 00 00	Enable profile torque mode
06	41 00		23 87 60 00 E8 03 00 00	Set torque ramp to 100%/sec
06	41 00		2F 04 27 00 62 00 00 00	Set max torque speed to 120000 µsteps/
				sec
06	41 00		2B 71 60 00 F4 01 00 00	Set torque to 50%

Cyclic Synchronous Position


Overview

With this mode, the trajectory generator is located in the control device, not in the drive device. In a cyclic synchronous manner, it provides a target position to the drive device, which performs position and velocity control. Optionally, additive velocity values can be provided by the control system in order to allow for velocity feed-forward.

The behavior of the control function is influenced by control parameters, which are externally applied. The interpolation time period defines the time period between two updates of the target position and/or additive position and is used for inter-cycle interpolation.

The target position is interpreted as absolute value. The position actual value is used as mandatory output to the control device. Additionally, the velocity actual value is output.

The following error is used to set an error bit in the statusword (6041_h) .

Figure 3.18 - Cyclic Synchronous Position Control Function

Controlword and Statusword for Cyclic Sync Position

The cyclic synchronous position mode uses no mode-specific bits of the controlword and three bits of the statusword for mode-specific purposes.

15 14	13	12	11	10	9 0	
Table 3.7 on page 52	following error	Table 3.7 on page 52	Target position ignored	reserved	Table 3.7 on page 52	

Table 3.84 - Statusword Bits for Cyclic Synchronous I	Position Mode
---	---------------

Bit	Value	Meaning
10	0	reserved
	1	reserved
11	0	Target position ignored
	1	Target position is used as input to position control loop
13	0	No following error
	1	Following error

Position Control Function

Overview

In this section, all parameters are described which are necessary for a closed loop position control. The control loop is fed with the **position_demand_value** as one of the outputs of the trajectory generator and with the output of the position detection unit (**position_actual_value**), like a resolver or encoder, as input parameters.

6062_h Position Demand Actual Value

This object provides the demanded position value. The value is given in motor steps.

Table 3.85 - 6062_h Object Description

Index	6062 _h
Name	Position demand actual value
Object code	VAR
Data type	Integer32
Category	Optional

Table 3.86 - 6062_h Entry Description

Sub-index	00 _h
Access	ro
PDO mapping	Yes
Value range	Integer32
Default value	0000 0000 _h

6063_h Position Actual Value Internal

This object provides the actual value of the position measurement device, which is one of the two input values of the closed-loop position control.

Table 3.87 - 6063_h Object Description

Index	6063 _h
Name	Position actual value internal
Object code	VAR
Data type	Integer32
Category	Optional

Table 3.88 - 6063_h Entry Description

Sub-index	00 _h
Access	ro
PDO mapping	Yes
Value range	Integer32
Default value	0000 0000 _h

6064_h Position Actual Value

This object represents the actual value of the position measurement device in microsteps.

Table 3.89 - 6064_h Object Description

Index	6064 _h
Name	Position actual value
Object code	VAR
Data type	Integer32
Category	Optional

Table 3.90 - 600	64 _h Entry	Description
------------------	-----------------------	-------------

Sub-index	00 _h
Access	ro
PDO mapping	Yes
Value range	Integer32
Default value	0000 0000 _h

6065_h Following Error Window

This object indicates the proportional range of acceptable values to the position demand. A Following Error will occur when the difference between the position demand and position actual exceeds the Following Error Window value. A following error may occur when a drive is blocked, unreachable profile velocity occurs, or at wrong closed-loop coefficients. The value is given in user defined position units. If the value of the following error window is FFFF FFFF_h, the following control is switched off.

Table 3.91 - 6065_h Object Description

Index	6065 _h
Name	Following error window
Object code	VAR
Data type	Unsigned32
Category	Optional

Table 3.92 - 6065_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	No
Value range	Unsigned32
Default value	0000 0512 _h

6066_h Following Error Timeout

This object is the configured time for a Following Error condition, after that the bit 13 of the statusword is set to 1. The reaction of the drive when a following error occurs is manufacturer-specific. The value is given in milliseconds.

Table 3.93 - 6066_h Object Description

Index	6066 _h
Name	Following error timeout
Object code	VAR
Data type	Unsigned16
Category	Optional

Table 3.94 -	6066 _h	Entry	Description
--------------	-------------------	-------	-------------

Sub-index	00 _h
Access	rw
PDO mapping	No
Value range	Unsigned16
Default value	0000 ^h

6067_h Position Window

This object indicates the configured proportional range of accepted positions relative to the target position. The target position is reached when the actual value of the position encoder is within the position window. The target position is handled in the same manner as in the trajectory generator. This limits functions and transforms into internal machine units before it may be used The value is given in user-defined position units. If the value of the position window is FFFF FFFF_h, the position window control is switched off.

Table 3.95 - 6067_h Object Description

Index	6067 _h
Name	Position window
Object code	VAR
Data type	Unsigned32
Category	Optional

Table 3.96 - 6067_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	No
Value range	Unsigned32
Default value	OFFF FFFF _h

6068_h Position Window Time

This object indicates the configured time, during which the actual position within the position window is measured. The value is given in milliseconds.

Table 3.97 - 6066_h Object Description

Index	6066 _h
Name	Position window time
Object code	VAR
Data type	Unsigned16
Category	Optional

Table 3.98 - 6066_h Entry Description

Sub-index	00 _h
Access	rw
PDO mapping	No
Value range	Unsigned16
Default value	0000 _h

Factors

608F_h Position Encoder Resolution

This object defines the ratio of encoder increments per motor revolution:

```
position encoder resolution = \frac{encoder increments (sub 01_h)}{motor revolutions (sub 02_h)}
```

The default values assume a 1000 line (4000 edges) encoder.

Table 3.99 - 608F_h Object Description

Index	608F _h
Name	Position encoder resolution
Object code	ARRAY
Data type	—
Category	Optional

Table 3.100 - 608F_h Entry Description

Sub-index	00 _h
Name	Number of entries
Access	ro
PDO mapping	—
Value range	—
Default value	02 _h

Sub-index	01 _h
Name	Resolution numerator
Access	rw
PDO mapping	—
Value range	Unsigned32 (1 to 65535 _d)
Default value	4000 _d

Sub-index	02 _h
Name	Resolution denominator
Access	rw
PDO mapping	—
Value range	Unsigned32 (1 to 65535 _d)
Default value	1 _d

6092_h Feed and Drive Shaft Resolution

This object defines the ratio of user units per shaft revolution:

```
feed and drive shaft resolution = \frac{\text{feed user units (sub 01_h)}}{\text{shaft revolutions (sub 02_h)}}
```

The default values assume a 200 step/rev motor at a step resolution of 256, or 51200 steps/ rev as the factor.

Table 3.101 - 6092h Object Description

Index	6092 _h
Name	Feed and drive shaft resolution
Object code	ARRAY
Data type	—
Category	Optional

Table 3.102 - 6092_h Entry Description

Sub-index	00 _h
Name	Number of entries
Access	ro
PDO mapping	—
Value range	—
Default value	02 _h

Sub-index	01 _h
Name	Feed user units numerator
Access	ro
PDO mapping	—
Value range	Unsigned32
Default value	51200 _d

Sub-index	02 _h
Name	Shaft revolutions denominator
Access	ro
PDO mapping	—
Value range	Unsigned32
Default value	1 _d

Optional Application FE (General I/O)

60FD_h Digital Inputs

This object reads the digital inputs.

31 24	23	22	21	20	19	18	17	16	15 4	3	2	1	0
Х	Х	Х	Х	х	4	3	2	1	reserved	Х	home switch	+ limit	– limit
MSb	Inpu	t poin	ts										LSb

Table 3.103 - 60FD_h Object Description

Index	60FD _h
Name	Digital inputs
Object code	VAR
Data type	Unsigned32
Category	Optional

Table 3.104 - 60FD_h Entry Description

Sub-index	00 _h
Access	ro
PDO mapping	Yes
Value range	Unsigned32
Default value	0000 0000 _h

60FE_h Digital Outputs

This object reads the digital inputs.

MSb	Output p	oints								LSb
Х	Х	х	Х	Х	х	3	2	1	reserved	brake
31 24	23	22	21	20	19	18	17	16	15 1	0

Table 3.105 - 60FE_h Object Description

Index	60FE _h
Name	Digital outputs
Object code	ARRAY
Data type	Unsigned32
Category	Optional

Table 3.106 - 60FE_h Entry Description

Sub-index	00 _h
Name	Number of entries
Access	ro
PDO mapping	No
Value range	01 _h
Default value	01 _h

Sub-index	01 _h
Name	Digital outputs
Access	rw
PDO mapping	Yes
Value range	Unsigned32
Default value	0000 0000 _h

Appendix A Diagnostics and Troubleshooting

Fieldbus Communication Error Diagnostics

A properly operating fieldbus is essential for evaluating operation and error messages.

Connections for Fieldbus Mode

If the product cannot be addressed via the fieldbus, first check the connections. The product manual contains the technical data of the device and information on network and device installation. Verify the following:

- Power connections to the device
- Fieldbus cable and fieldbus wiring

Baud Rate and Address

If it is possible to connect to a device, verify the baud rate and node address.

- The baud rate must be the same for all devices in the network.
- The node address of each device must be between 1 and 127 and unique for each device.

To set the baud rate and node address see Chapter 2, "Commissioning".

Fieldbus Function Test

After correct configuration of the transmission data, test fieldbus mode. This requires installation of a CAN configuration tool that displays CAN messages. Feedback from the product is indicated in the form of a bootup message:

- Switch the power supply off and on again.
- Observe the network messages after switching on. After initialization of the bus, the device sends a boot-up message (COB ID 700_h + node ID, and 1 data byte with the content 00_h).
- With the factory setting 65 (41_h) for the node address, the boot-up message is sent via the bus. The device can then be put into operation via NMT services.

Error Diagnostics via Fieldbus

Message Objects

A number of objects provide information on the operating state and on errors:

- Object Statusword (6041h), see "Operating States" on page 48
- Object EMCY (80h+ Node-ID) Error message from a device with error and error code.
- Object Error register (1001h) Error
- Object Error code (603Fh) Error code of the most recent error. See "Error Code (603F_h)" on page 54

Messages on Device Status

Synchronous and asynchronous errors are distinguished in terms of evaluation and handling of errors.

Synchronous Errors

The device signals a synchronous error directly as a response to a message that cannot be evaluated. Possible causes comprise transmission errors or invalid data. See "Error Register (1001_h) " below for a list of synchronous errors.

Asynchronous Errors

Asynchronous errors are signaled by the monitoring units in the device as soon as a device error occurs. An asynchronous error is signaled via bit 3, Error, of the object **statusword** (6041h). In the case of errors that cause an interruption of the movement, the device transmits an EMCY message.

CANopen Error Messages

CANopen error messages are signaled in the form of EMCY messages. They are evaluated via the objects Error register (1001h) and Error code (603Fh).

CANopen signals errors that occur during data exchange via SDO with the special SDO error message ABORT.

Error Register (1001_h)

This object is an error register for the device. The device can map internal errors in this byte. This entry is mandatory for all devices. It is a part of an Emergency object.

Index	1001 _h
Name	Error register
Object code	VAR
Data type	Unsigned8
Category	Mandatory

Table A.1 - 1001_h Object Description

Table A.2 - 1001_h Entry Description

Sub-index	00 _h
Access	ro
PDO mapping	Optional
Value range	Unsigned8
Default value	—

Bit	M/O	Meaning		
0	М	Generic Error		
1	0	Current		
2	0	Voltage		
3	0	Temperature		
4	0	Communication error (Overrun, Error State)		
5	0	Device profile specific		
6	0	Reserved (always 0)		
7	0	Manufacturer specific		

Table A.3 - Abort Connection Option Code

Pre-defined Error (1003_h)

The object at index 1003_h holds the errors that have occurred on the device and have been signaled via the Emergency Object. In doing so it provides an error history.

- 1. The entry at sub-index 0 contains the number of actual errors that are recorded in the array starting at sub-index 1.
- 2. Every new error is stored at sub-index 1, the older ones move down the list.
- 3. Writing a "0" to sub-index 0 deletes the entire error history (empties the array). Values higher than 0 lead to an abort message (error code: 0609 0030_h) and should not to be written.
- 4. The error numbers are of type UNSIGNED32 and are composed of a 16 bit error code and a 16 bit additional error information field which is manufacturer specific. The error code is contained in the lower 2 bytes (LSb) and the additional information is included in the upper 2 bytes (MSb). If this object is supported, it must consist of the length entry on subindex 00_h and at least one error entry at sub-index 01_h.

Table A.4 -	1003 _h	Object	Description
-------------	-------------------	--------	-------------

Index	1003 _h		
Name	Pre-defined error field		
Object code	ARRAY		
Data type Unsigned32			
Category	Optional		

Table A.5 - 1003_h Entry Description

Sub-index	00 _h		
Description	Number of errors		
Access	rw		
Entry category	Mandatory		
PDO mapping	No		
Value range	0 – 254		
Default value	0		

Sub-index	01 _h		
Description	Standard error field		
Access	ro		
Entry category	Optional		
PDO mapping	No		
Value range	Unsigned32		
Default value	—		

Sub-index	02 _h – FE _h
Description	Standard error field
Access	ro
Entry category	Optional
PDO mapping	No
Value range	Unsigned32
Default value	—

Table A.6 - Error Code Descriptions

Error description	Add'tl info	Error code	
	byte	byte	
No error	0 _h	0000 _h	
CAN overrun	0 _h	8110 _h	
CAN in error passive mode	0 _h	8120 _h	
Lifeguard or heartbeat error	0 _h	8130 _h	
Recovered from "bus off" state	0 _h	8140 _h	
Bus off state occurred	0 _h	8141 _h	
PDO not processed - length error	0 _h	8210 _h	
Over temperature error	8 _h	4210 _h	
Pending over temperature warning	16 _h	4210 _h	
Motor idle during commanded move	1 _h	FF01 _h	
Motor should be idle	2-8 _h	FF01 _h	
Undershot warning	9 _h	FF01 _h	

Status LED

The LMD has two light-emitting diodes (LEDs) for status indication.

- LED 1: Status of the power supply
- LED 2: The CANopen status LED shows the states as specified in CiA DR-303-3, Indicator Specification.

Table A.7 - LED 1 Power Indication

Color	Status		
Off	No Power		
Green	+VDC supply in range		
Flashing green +VDC off, drive on AUX power			
Red +VDC supply out of range			
Flashing red	ing red +VDC off, AUX power out of range		

Table A.8 - LED 2 CANopen Status

Color	Status		
Red - single Flash	At least one of the error counters of the CAN controller has		
	reached or exceeded the advisory level (too many error frames).		
Red - double flash	A guard event (NMT-Slave or NMT-master) or a heartbeat event		
	(Heartbeat consumer) has occurred.		
Red - triple flash	The SYNC message has not been received within the configured		
	communication cycle period time out (see Object Dictionary Entry		
	0x1006).		
Red - on	The CAN controller bus is off		
Green - single flash	The Device is in STOPPED state		
Green - blinking	The Device is in the PREOPERATIONAL state		
Green - on	The Device is in the OPERATIONAL state		

Specification for the Objects

Index

The index specifies the position of the object in the object dictionary. The index value is specified as a hexadecimal value.

Object Code & Data Types

The object code specifies the data structure of the object.

Table B.1 - CANopen Object Codes

Object code	Object code Meaning	
VAR	A simple value, for example of the type Integer8 or Unsigned32	7
ARR (AR- RAY)	A data field in which the entries have the same data type.	8
REC (RE-	A data field that contains entries that are a combination of	9
CORD)	simple data types.	

Table B.2 - CANopen Data Types

Data type	Value range	Data length	CiA 301 coding
Boolean	0 = false, 1 = true	1 byte	0001
Integer8	–128 +127	1 byte	0002
Integer16	-32768 +32767	2 byte	0003
Integer32	-2147483648	4 byte	0004
	+2147483647		
Unsigned8	0 255	1 byte	0005
Unsigned16	0 65535	2 byte	0006
Unsigned32	0 4294967295	4 byte	0007
Visible String8	ASCII chars	8 byte	0009
Visible String168	ASCII chars	16 byte	0010

RO/RW

Indicates read and/or write values RO: values can only be read RW: values can be read and written

PDO

R_PDO: Mapping for R_PDO possible T_PDO: Mapping for T_PDO possible No specification: PDO mapping not possible with the object

Min/max Values

Specifies the permissible range in which the object value is defined and valid.

Factory Default

Factory default settings when the product is shipped.

Overview of Object Group 1000_h

No objects from object group 1000_h are PDO mappable.

Table B.3 - Object Group 1000_h Overview

Index	Sub-index	Name	Obj. code	Data type	Access	Description
<u>1000</u> h		Device type	VAR	Unsigned32	ro	Device type and profile
<u>1001</u> h		Error register	VAR	Unsigned8	ro	Error register
<u>1003</u> h		Predefined error field	ARR		rw	Error history, memory for error messages
	00 _h	Number of errors	VAR	Unsigned8	rw	Number of error entries
	01 _h - 04 _h	Error field	VAR	Unsigned32	ro	Error number
<u>1005</u> h		COB-ID SYNC	VAR	Unsigned32	rw	Identifier of the synchronization object
<u>1007</u> h		Sync window length	VAR	Unsigned32	rw	Time window for synchronous PDOs in µS
<u>1008</u> h		Mfg. device name	VAR	Vis String8	ro	Manufacturer's designation
<u>1009</u> h		Mfg. hardware version	VAR	Vis String8	ro	Hardware version
<u>100A</u> h		Mfg. software version	VAR	Vis String8	ro	Software version
<u>100C</u> h		Guard time	VAR	Unsigned16	rw	Time span for Node Guarding [ms]
<u>100D</u> h		Life time factor	VAR	Unsigned8	rw	Repeat factor for Node Guarding
<u>1010</u> h		Store parameters	ARR	Unsigned32		Store parameters
	00 _h	Largest sub-index	VAR	Unsigned8	ro	Largest sub-index supported» 04 _h
	01 _h	Save all parameters	VAR	Unsigned32	rw	Save all parameters
	02 _h	Save communication	VAR	Unsigned32	rw	Save Communication Parameters
	03 _h	Save application	VAR	Unsigned32	rw	Save Application Parameters
	04 _h	Save manufacturer	VAR	Unsigned32	rw	Save Manufacturer Parameters
<u>1011</u> h		Restore defaults	ARR	Unsigned32		Restore defaults as group
	00 _h	Largest sub-index	VAR	Unsigned8	ro	Largest sub-index supported» 04 _h
	01 _h	Restore all defaults	VAR	Unsigned32	rw	Restore all defaults
	02 _h	Restore communication	VAR	Unsigned32	rw	Restore Communication defaults
	03 _h	Restore application	VAR	Unsigned32	rw	Restore Application defaults
	04 _h	Restore manufacturer	VAR	Unsigned32	rw	Restore Manufacturer defaults
<u>1012</u> h		COB-ID time stamp	VAR	Unsigned32	rw	COB-ID time stamp message
<u>1014</u> h		COB-ID EMCY	VAR	Unsigned32	rw	80 _h + Node ID
<u>1015</u> h		Inhibit time EMCY	VAR	Unsigned16	rw	Wait time for the repeated transmission of
						EMCY x 100 μS
<u>1017</u> h		Producer Heartbeat Time	VAR	Unsigned16	rw	Time interval for producer «Heartbeat»
<u>1018</u> h		Identity	REC		ro	Identification object
	00 _h	Largest sub-index	VAR	Unsigned8	ro	Largest sub-index supported» 04 _h
	01 _h	Vendor ID	VAR	Unsigned32	ro	Vendor ID
	02 _h	Product code	VAR	Unsigned32	ro	Product code
	03 _h	Revision number	VAR	Unsigned32	ro	Revision number
	04 _h	Serial number	VAR	Unsigned32	ro	Serial number

Index	Sub-index	Name	Obj. code	Data type	Access	Description
<u>1400</u> h		1st R_PDO parameter	REC			1st receive PDO parameter
	00 _h	Largest sub-index	VAR	Unsigned8	ro	Largest sub-index supported» 05 _h
	01 _h	COB-ID used	VAR	Unsigned32	rw	COB-ID used: 200 _h + Node ID
	02 _h	Transmission type	VAR	Unsigned8	rw	Default type = 255 (asynchronous)
	03 _h	Inhibit time	VAR	Unsigned16	rw	Default = 0
	05 _h	Event timer	VAR	Unsigned16	rw	Default = 0
<u>1401_h</u>		2nd R_PDO parameter	REC			2nd receive PDO parameter
	00 _h	Largest sub-index	VAR	Unsigned8	ro	Largest sub-index supported» 05 _h
	01 _h	COB-ID used	VAR	Unsigned32	rw	COB-ID used: 300 _h + Node ID
	02 _h	Transmission type	VAR	Unsigned8	rw	Default type = 255 (asynchronous)
	03 _h	Inhibit time	VAR	Unsigned16	rw	Default = 0
	05 _h	Event timer	VAR	Unsigned16	rw	Default = 0
<u>1402_h</u>		3rd R_PDO parameter	REC	İ	1	3rd receive PDO parameter
	00 _h	Largest sub-index	VAR	Unsigned8	ro	Largest sub-index supported» 05 _h
	01 _h	COB-ID used	VAR	Unsigned32	rw	COB-ID used: 400 _h + Node ID
	02 _h	Transmission type	VAR	Unsigned8	rw	Default type = 255 (asynchronous)
	03 _h	Inhibit time	VAR	Unsigned16	rw	Default = 0
	05 _h	Event timer	VAR	Unsigned16	rw	Default = 0
<u>1403</u> h		4th R_PDO parameter	REC		1	4th receive PDO parameter
	00 _h	Largest sub-index	VAR	Unsigned8	ro	Largest sub-index supported» 05 _h
	01 _h	COB-ID used	VAR	Unsigned32	rw	COB-ID used: 500 _h + Node ID
	02 _h	Transmission type	VAR	Unsigned8	rw	Default type = 255 (asynchronous)
	03 _h	Inhibit time	VAR	Unsigned16	rw	Default = 0
	05 _h	Event timer	VAR	Unsigned16	rw	Default = 0
<u>1600</u> h		1st R_PDO mapping	REC		ro	PDO mapping for R_PDO1, settings
	00 _h	# of mapped objects	VAR	Unsigned8	rw	Number of mapped objects, range 1 – 64
	01 _h - 08 _h	Application Objects	VAR	Unsigned32	rw	R_PDO1 mapping application objects
<u>1601</u> h		2nd R_PDO mapping	REC		ro	PDO mapping for R_PDO2, settings
	00 _h	# of mapped objects	VAR	Unsigned8	rw	Number of mapped objects, range 1 – 64
	01 _h - 08 _h	Application Objects	VAR	Unsigned32	rw	R_PDO2 mapping application objects
<u>1602</u> h		3rd R_PDO mapping	REC		ro	PDO mapping for R_PDO3, settings
	00 _h	# of mapped objects	VAR	Unsigned8	rw	Number of mapped objects, range 1 – 64
	01 _h - 08 _h	Application Objects	VAR	Unsigned32	rw	R_PDO3 mapping application objects
<u>1603</u> h		4th R_PDO mapping	REC		ro	PDO mapping for R_PDO4, settings
	00 _h	# of mapped objects	VAR	Unsigned8	rw	Number of mapped objects, range 1 – 64
	01 _h - 08 _h	Application Objects	VAR	Unsigned32	rw	R_PDO4 mapping application objects
<u>1800</u> h		1st T_PDO parameter	REC			1st transmit PDO parameter
	00 _h	Largest sub-index	VAR	Unsigned8	ro	Largest sub-index supported» 05 _h
	01 _h	COB-ID used	VAR	Unsigned32	rw	COB-ID used: 180 _h + Node ID
	02 _h	Transmission type	VAR	Unsigned8	rw	Default type = 255 (asynchronous)
	03 _h	Inhibit time	VAR	Unsigned16	rw	Default = 0
	05 _h	Event timer	VAR	Unsigned16	rw	Default = 0
<u>1801</u> h		2nd T_PDO parameter	REC		ļ	2nd transmit PDO parameter
	00 _h	Largest sub-index	VAR	Unsigned8	ro	Largest sub-index supported» 05 _h
	01 _h	COB-ID used	VAR	Unsigned32	rw	COB-ID used: 280 _h + Node ID
	02 _h	Transmission type	VAR	Unsigned8	rw	Default type = 255 (asynchronous)
	03 _h	Inhibit time	VAR	Unsigned16	rw	Default = 0
	05 _h	Event timer	VAR	Unsigned16	rw	Default = 0

Index	Sub-index	Name	Obj. code	Data type	Access	Description
<u>1802</u> h		3rd T_PDO parameter	REC			3rd transmit PDO parameter
	00 _h	Largest sub-index	VAR	Unsigned8	ro	Largest sub-index supported» 05 _h
	01 _h	COB-ID used	VAR	Unsigned32	rw	COB-ID used: 380 _h + Node ID
	02 _h	Transmission type	VAR	Unsigned8	rw	Default type = 255 (asynchronous)
	03 _h	Inhibit time	VAR	Unsigned16	rw	Default = 0
	05 _h	Event timer	VAR	Unsigned16	rw	Default = 0
<u>1803</u> h		4th T_PDO parameter	REC			4th transmit PDO parameter
	00 _h	Largest sub-index	VAR	Unsigned8	ro	Largest sub-index supported» 05 _h
	01 _h	COB-ID used	VAR	Unsigned32	rw	COB-ID used: 480 _h + Node ID
	02 _h	Transmission type	VAR	Unsigned8	rw	Default type = 255 (asynchronous)
	03 _h	Inhibit time	VAR	Unsigned16	rw	Default = 0
	05 _h	Event timer	VAR	Unsigned16	rw	Default = 0
<u>1A00</u> h		1st T_PDO mapping	REC		ro	PDO mapping for T_PDO1, settings
	00 _h	# of mapped objects	VAR	Unsigned8	rw	Number of mapped objects, range 1 – 64
	01 _h - 08 _h	Application Objects	VAR	Unsigned32	rw	T_PDO1 mapping application objects
<u>1A01</u> h		2nd T_PDO mapping	REC		ro	PDO mapping for T_PDO2, settings
	00 _h	# of mapped objects	VAR	Unsigned8	rw	Number of mapped objects, range 1 – 64
	01 _h - 08 _h	Application Objects	VAR	Unsigned32	rw	T_PDO2 mapping application objects
<u>1A02</u> h		3rd T_PDO mapping	REC		ro	PDO mapping for T_PDO3, settings
	00 _h	# of mapped objects	VAR	Unsigned8	rw	Number of mapped objects, range 1 – 64
	01 _h - 08 _h	Application Objects	VAR	Unsigned32	rw	T_PDO3 mapping application objects
<u>1A03</u> h		4th T_PDO mapping	REC		ro	PDO mapping for T_PDO4, settings
	00 _h	# of mapped objects	VAR	Unsigned8	rw	Number of mapped objects, range 1 – 64
	01 _h - 08 _h	Application Objects	VAR	Unsigned32	rw	T_PDO4 mapping application objects

Overview of Manufacturer Specific Objects Group 2000_h

Table B.4 - Object Group 2000_h Overview

Index	Sub	Name	Obj. code	Data type	Access	PDO	Description
<u>2000</u> h	1	Configure GPIO	ARR			Ì	Configure the general purpose I/O points
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 05 _h
	01 _h	Reserved	VAR	Unsigned8	rw		Configure the I/O point as an output or input
	02 _h	Reserved	VAR	Unsigned8	rw		Configure the I/O point as sourcing or sinking
	03 _h	Reserved	VAR	Unsigned8	rw		Configure as both sink/source or source only
	04 _h	Configure polarity in	VAR	Unsigned8	rw		Configure input logic polarity
	05 _h	Reserved	VAR	Unsigned8	rw		Configure output logic polarity
<u>2002</u> h		Configure digital inputs	ARR				Configure the functions of inputs
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 04 _h
	01 _h	Define as Home switch	VAR	Unsigned8	rw		Configure input as homing switch
	02 _h	Define as positive limit	VAR	Unsigned8	rw		Configure input as positive limit switch
	03 _h	Define as negative limit	VAR	Unsigned8	rw		Configure input as negative limit switch
	04 _h	Define as inhibit switch	VAR	Unsigned8	rw		Configure input as inhibit switch (see 2007 _h)
<u>2004</u> h		Input mask	ARR				Configure input filter mask
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 08 _h
	01 _h - 08 _h	Input filter mask	VAR	Unsigned8	rw		Defines inputs to apply filtering (see 2006 _h)
<u>2006</u> h		Input filter time	ARR				Configure input filter time
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 08 _h
	01 _h - 08 _h	Input filter time	VAR	Unsigned8	rw		Defines inputs filter time in ms

Index	Sub	Name	Obj. code	Data type	Access	PDO	Description
<u>2007</u> h		Inhibit switch	ARR	i			Configure inhibit switch
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 01 _h
	01 _h	Input switch action	VAR	Unsigned8	rw		Defines the action of the inhibit switch
<u>2008</u> h		Configure digital outputs	ARR				Configure output functions
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 02 _h
	01 _h	Brake output defined	VAR	Unsigned8	rw		Defines the output(s) used for braking
	02 _h	Target reached output	VAR	Unsigned8	rw		Defines the output used to indicate target reached
<u>2010</u> h	n	Analog input configuration	ARR				Configure the analog input
[]	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 03 _h
	01 _h	Analog input read value	VAR	Unsigned16	ro	T PDO	Analog input value
	02 _h	Analog input scale	VAR	Unsigned8	rw		Sets the mode as 0 - 5V, 0 - 10V or 0 - 20mA
	03 _h	Analog input filter	VAR	Unsigned8	rw		Defines the filtering for the analog input
<u>2014_h</u>		Aux-power monitoring	ARR	- choighteuc			Monitor the level of the Aux-power input
<u>n</u>	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 03_{h}
	01 _h	Aux-power voltage	VAR	Unsigned8	ro	T PDO	Read Aux-power voltage value
	02 _h	Aux-power low advisory	VAR	Unsigned8	ro		Read Aux-power low level advisory
	03 _h	Aux-power high advisory	VAR	Unsigned8	ro		Read Aux-power high level advisory
<u>2015_h</u>		Input voltage monitoring	ARR	- choighteuc			Monitors the level of the +VDC input voltage
<u>n</u>	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = $0.3_{\rm h}$
	01 _h	Input +V	VAR	Unsigned8	ro	T PDO	Read Input +V voltage value
	02 _h	Input +V low advisory	VAR	Unsigned8	ro		Read Input +V low level advisory
	03 _h	Input +V high advisory	VAR	Unsigned8	ro		Read Input +V high level advisory
<u>2016_h</u>	h	Abs. Encoder Back-up	ARR	onoignouo			
<u>2010</u> h		Voltage	/				
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 03 _h
	01 _h	Voltage level	VAR	Unsigned16	ro	T_PDO	Read the voltage of the abs. encoder battery backup input
	02 _h	Low-level advisory	VAR	Unsigned16	rw		Set low-level advisory threshold (abs. encoder bat- tery back-up)
	03 _h	High-level advisory	VAR	Unsigned16	rw		Set high-level advisory threshold (abs. encoder battery back-up)
<u>2017</u> h		Abs. encoder internal voltage	VAR	Unsigned16	rw		Read the level of the internal back-up voltage (abs. encoder models only)
<u>2018</u> h		Board Temperature	ARR				Set the board temperature parameters
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 03 _h
	01 _h	Board temperature	VAR	Integer8	ro	T_PDO	Board temperature reading
	02 _h	Set temperature advisory	VAR	Integer8	rw		Set board temperature advisory threshold
	03 _h	Set temperature error	VAR	Integer8	rw		Set board temperature error threshold
<u>2019</u> h		H-Bridge Temperature	ARR				Set the bridge temperature parameters
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 03 _h
	01 _h	H-Bridge temperature	VAR	Integer8	ro	T_PDO	Bridge temperature reading
	02 _h	Set temperature advisory	VAR	Integer8	rw		Set bridge temperature advisory threshold
	03 _h	Set temperature error	VAR	Integer8	rw		Set board temperature error threshold
<u>2020</u> h		Set temperature error	VAR	Integer8	rw		Set bridge temperature error threshold
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 02 _h
	01 _h	Limit reached flag	VAR	Unsigned8	rw		Indicates type of limit reached
	02 _h	Limit reached mask	VAR	Unsigned8	rw		Defines limits to act upon
<u>2022</u> h		Software limit	ARR				Actual position software limit
	00 _h	Number of entries	VAR	Unsigned8	ro	Ì	Number of entries = 02 _h
	01 _h	Actual negative limit	VAR	Interger32	rw	Ì	Actual negative limit
	02 _h	Actual positive limit	VAR	Interger32	rw	İ	Actual positive limit
<u>2030</u> h		Output h-bridge polarity	VAR	Integer8	rw	İ	Defines the polarity of the output bridge
<u>2031</u> h	i	Unit options	VAR	Unsigned8	rw	İ	Enable encoder, capture/trip functions

Index	Sub	Name	Obj. code	Data type	Access	PDO	Description
<u>2033</u> h		Capture input parameters	REC				Capture input parameters
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 04 _h
	01 _h	Capture input control	VAR	Unsigned8	rw		Enables the capture input
	02 _h	Capture input flag	VAR	Unsigned8	rw		Displays the status of a position capture
	03 _h	Capture input filter	VAR	Unsigned8	rw		Sets the filtering for the capture input
	04 _h	Captured position	VAR	Integer32	ro	T_PDO	Stores the captured position
<u>2034</u> h		Bridge on settle time	ARR	Ì			Settling time after bridge power on
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 01 _h
	01 _h	Bridge settle time	VAR	Unsigned8	rw		Bridge settling time in ms
<u>2035</u> h		Brake settle allow time		ĺ	İ		Settling time after brake on/off
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 02 _h
	01 _h	Brake on settle time	VAR	Unsigned8	rw		Brake on settling time in ms
	02 _h	Brake off settle time	VAR	Unsigned8	rw		Brake off settling time in ms
<u>2036</u> h		Hold current delay time	VAR	Unsigned16	rw		Defines time in ms to transition to hold current fol- lowing cessation of motion
<u>2037</u> h		Bridge on to encoder settle time	VAR	Unsigned16	rw		Time between switching into operation enable to resynching the encoder position
<u>2038</u> h		Trip output configuration	REC		1		Trip output parameters
	00 _h	Number of entries	VAR	Unsigned8	ro	ĺ	Number of entries = 03 _h
	01 _h	Trip output control	VAR	Unsigned16	rw	ĺ	Controls logic and trip points
	02 _h	1st position of a series	VAR	Integer32	rw		First trip position
	03 _h	Multiple trip point spacing	VAR	Integer32	rw		Defines the spacing between subsequent trip points
<u>2098</u> h		Homing configuration	VAR	Unsigned8	rw		Defines the counter status following a home
<u>2099</u> h	1	Index offset	VAR	Unsigned32	rw		Defines the offset of the index in microsteps
<u>2204</u> h		Run current	VAR	Unsigned8	rw		Sets the motor run current percent
<u>2205</u> h		Hold current	VAR	Unsigned8	rw		Sets the motor hold current percent
<u>2211_h</u>		Position present point target	VAR	Integer32	ro		Position present point target
<u>2212</u> h		Position final point target	VAR	Integer32	ro		Position final point target
<u>2221</u> h		Following Error	ARR	1			Following Error reaction code
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 01 _h
	01 _h	Reaction code	VAR	Unsigned8	rw		Following error reaction code
<u>2231</u> h		Encoder following mode	ARR	ĺ	1		Allows LMD to follow an external encoder input
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 06 _h
	01 _h	Direction of rotation	VAR	Unsigned8	rw		Direction of rotation for encoder following
	02 _h	Sample rate	VAR	Unsigned16	rw		Sets the sample rate of the input for encoder fol- lowing
	03 _h	Target reached delay time	VAR	Unsigned16	rw		Sets delay before triggering target reached.
	04 _h	Minimum Threshold	VAR	Signed16	rw		Sets counts required to activate x 1 gain
	05 _h	Minimum Move	VAR	Signed16	rw		Sets the minimum move distance
	06 _h	Maximum Move	VAR	Signed16	rw		Sets the maximum move distance
	07 _h	Gain	VAR	Signed16	rw		Gain occurring between min. and max. distance
	08 _h	Threshold spacing	VAR	Signed16	rw		Gain increase or decrease
<u>2401</u> h		Gen Purpose user variable	VAR	Unsigned8	rw		May be used to store 8 bits of data
<u>2402</u> h		Gen Purpose user variable	ARR	Unsigned32	rw		Set of user 32-bit user variables
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 04 _h
	01 _h	Gen Purpose user variable	VAR	Unsigned32	rw		General purpose 32-bit variable
	02 _h	Gen Purpose user variable	VAR	Unsigned32	rw	Ì	General purpose 32-bit variable
	03 _h	Gen Purpose user variable	VAR	Unsigned32	rw	İ	General purpose 32-bit variable
<u>2701</u> h		hMTechnology enable	VAR	Unsigned8	rw		Enable/disable hMT control (closed loop only)
2702 _h	1	Make up mode	VAR	Unsigned8	rw	1	Defines hMT make up mode (closed loop only)
	L	· · ·					
<u>2703</u> h		Make up velocity	VAR	Unsigned32	rw		Defines the velocity for make up (closed loop only)

Index	Sub	Name	Obj. code	Data type	Access	PDO	Description
<u>2708</u> h		Velocity Actual Filter	VAR	Unsigned8	rw		
<u>2710</u> h		Locked Rotor Timeout	VAR	Unsigned8	rw		Defines the time period for a locked rotor condition to assert. (closed loop only)
<u>2711</u> h		Locked Rotor Opcode	VAR	Integrer16			Defines the response to a locked rotor condition (closed loop only)
2712 _h		Following Error Opcode	VAR	Integrer16			Defines the response to a following error (closed loop only)
<u>2740</u> h		hMTechnology control	VAR	Unsigned8	rw	R_PDO	Defines the control parameters for hMTechnology. (closed loop only)
<u>2741</u> h		hMTechnology status (filtered)	VAR	Unsigned8	ro	T_PDO	Reads the hMT status as filtered by 2743_h (closed loop only)
<u>2742</u> h		hMTechnology status (unfil- tered)	VAR	Unsigned8	ro		Reads the hMT status unfiltered (closed loop only)
<u>2743</u> h		hMTechnology status filter	VAR	Unsigned8	rw		Determines which bits of the status byte are filtered in 2741 _h
<u>2840</u> h		Multi-turn Control Byte	VAR	Integrer16	rw	Ì	
<u>2841</u> h		Multi-turn Status Byte	VAR	Integrer16	ro		

Overview of Assignment Objects Group 6000_h

Table B.5 - Object Group 6000_h Overview

Index	Sub	Name	Obj. code	Data type	Access	PDO	Description
<u>6007</u> h		Abort connection opcode	VAR	Integer16	rw		Controls the process for abort connection
<u>603F_h</u>		Error code	VAR	Unsigned16	ro	T_PDO	Stores the last error
<u>6040</u> h		Control word	VAR	Unsigned16	rw	R_PDO	Control word
<u>6041</u> h		Status word	VAR	Unsigned16	ro	T_PDO	Status word
<u>605A</u> h		Quick stop option code	VAR	Integer16	rw		Defines the method for quick stop
<u>605B</u> h		Shutdown option code	VAR	Integer16	rw		Defines the method for shutdown
<u>605C</u> h		Disable operation opcode	VAR	Integer16	rw		Defines the method for disable operation
<u>605D</u> h		Halt operation opcode	VAR	Integer16	rw		Defines the method for halt operation
<u>605E_h</u>		Error reaction opcode	VAR	Integer16	rw		Defines the reaction to a error
<u>6060</u> h		Modes of operation	VAR	Integer8	rw	R_PDO	Set the mode of operation
<u>6061_h</u>		Modes of operation display	VAR	Integer8	ro	T_PDO	Read the mode of operation
<u>6062</u> h		Position demand value	VAR	Integer32	ro	T_PDO	Read the motor position in user units
<u>6063</u> h		Position actual value	VAR	Integer32	ro	T_PDO	Read the motor position
<u>6064</u> h		Position actual value	VAR	Integer32	ro	T_PDO	Read the motor position
<u>6065</u> h		Following error window	VAR	Unsigned32	rw		Defines range of tolerated positions symmetrical to 6062 _h
<u>6066</u> h		Following error window time	VAR	Unsigned16	rw		Defines the timeout for the next error window
<u>6067</u> h		Position window	VAR	Unsigned32	rw	1	Defines accepted positions relative to target
<u>6068</u> h		Position window timeout	VAR	Unsigned16	rw		Defines time to indicate target reached
<u>606C</u> h		Velocity actual value	VAR	Integer32	ro	T_PDO	Actual velocity of the motor
<u>6071</u> h		Target torque	VAR	Integer16	rw	R_PDO	Defines the target torque for Profile Torque mode
<u>6077</u> h		Torque actual value	VAR	Integer16	ro	T_PDO	Actual torque value for Profile Torque
<u>607A</u> h		Profiled target position	VAR	Integer32	rw	R_PDO	Defines target position for absolute or relative move
<u>607C</u> h		Homing offset	VAR	Integer32	rw		Defines offset from homing zero position
<u>607E_h</u>		Polarity	VAR	Unsigned8	rw	R_PDO	Sets polarity for position/speed commands
<u>6081</u> h		Profile velocity	VAR	Unsigned32	rw	R_PDO	Sets the velocity for the profile position motion
<u>6082</u> h		Initial velocity	VAR	Unsigned32	rw	R_PDO	Sets the terminal (max) velocity
<u>6083</u> h		Profile acceleration	VAR	Unsigned32	rw	R_PDO	Sets the acceleration for profile position and profile velocity motion
<u>6084</u> h		Profile deceleration	VAR	Unsigned32	rw	R_PDO	Sets the deceleration for profile position and profile velocity motion
<u>6085</u> h		Quick stop deceleration	VAR	Unsigned32	rw		Sets the deceleration for a quick stop state

Index	Sub	Name	Obj. code	Data type	Access	PDO	Description
<u>6086</u> h		Motion profile type	VAR	Integer16	rw	R_PDO	Defines method by which profile motion is evaluated
<u>6087</u> h	1	Torque slope	VAR	Unsigned32	rw		Defines the torque ramp for Profile Torque mode
<u>608F</u> h		Position encoder resolution	ARR				Defines relation between motor revolution and position increments
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 02 _h
	01 _h	Resolution numerator	VAR	Unsigned32	rw		# of encoder increments
	02 _h	Resolution denominator	VAR	Unsigned32	rw		# of motor revolutions
<u>6092</u> h		Factor group feed and driveshaft	ARR				Defines relation between feed user units and drive shaft revolutions
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 02 _h
	01 _h	Feed numerator	VAR	Unsigned32	rw		# of feed increments
	02 _h	Driveshaft denominator	VAR	Unsigned32	rw		# of driveshaft revolutions
<u>6098</u> h		Homing method	VAR	Integer8	rw		Defines the method for homing operation
<u>6099</u> h		Homing speed	ARR				Defines the high and low speeds for homing
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 02 _h
	01 _h	Homing speed fast	VAR	Unsigned32	rw		Defines the high speed for homing
	02 _h	Homing speed slow	VAR	Unsigned32	rw		Defines the low speed for homing
60C2 _h		Interpolated position time period	REC				Defines time for interpolation position trajectory.
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 02 _h
	01 _h	Interpolation period	VAR	Unsigned8	rw		Interpolation time period
	02 _h	Interpolation factor	VAR	Integer8	rw		Interpolation factor
<u>60F8_h</u>		Maximum slippage	VAR	Integer32	rw		Maximum slippage
<u>60FD</u> h		Digital inputs	VAR	Unsigned32	ro	T_PDO	Reads the state of digital inputs
60FE _h		Digital outputs	ARR				Sets the state of digital outputs
	00 _h	Number of entries	VAR	Unsigned8	ro		Number of entries = 01 _h
	01 _h	Digital outputs	VAR	Unsigned32	rw	R_PDO	Reads the state of digital inputs
<u>60FF</u> h		Target velocity	VAR	Integer32	rw	R_PDO	Defines the target velocity
6402 _h		Motor types	VAR	Unsigned16	ro		Motor type = 9: Stepper motor
<u>6502</u> h		Supported drive modes	VAR	Unsigned32	ro		Profile position, profile velocity, homing

Details of Object Group 1000_h

1000_h Device Type

The object specifies the device profile used as well as the device type.

Table B.6 - 1000_h Object Description

Index	1000 _h
Name	Device type
Object code	VAR
Data type	Unsigned32

Table B.7 - 1000_h Value Description

Sub-index	00 _h , device type
Meaning	Device type and profile
Access	Read only
PDO mapping	—
Value range	—
Default value	0044 0192 _h
Category	—

Table B.8 - Bit Coding Sub-index 00h

Bit	Access	Value	Meaning	
31-16	ro	0044 _h	Stepper motor	
15-0	ro	0192 _h	Device profile CiA 402	

1001_h Error Register

The object specifies the error of the device. The detailed cause of error can be determined with the object **predefined error field (1003h)** and, for reasons of compatibility with devices with other fieldbus profiles, with the object **error code (603Fh)**.

Errors are signaled by an EMCY message as soon as they occur.

Table B.9 - 1001_h Object Description

Index	1001 _h
Name	Error register
Object code	VAR
Data type	Unsigned8

Table B.10 - 1001_h Value Description

Sub-index	00 _h , error register
Meaning	Error register
Access	Read only
PDO mapping	—
Value range	—
Default value	—
Category	_

Table B.11 - Bit Coding Sub-index 00h

Bit	Access	Value	Meaning	
0	ro	_	Error (generic error)	
1	ro	—	Reserved	
2	ro	—	Reserved	
3	ro	_	Temperature	
4	ro	—	Communication profile (communication	
			error)	
5	ro	—	Reserved	
6	ro	_	Reserved	
7	ro	—	Manufacturer specific	

1003_h Pre-defined Error Field

The object contains the latest error messages that were shown as EMCY messages.

- The sub-index 00_h entry contains the number of saved error messages.
- The current error message is stored at sub-index 01_h, older messages are moved to higher sub-index entries.
- Writing 0 to sub-index 00_h resets the error list.

Table B.12 - 1003_h Object Description

Index	1003 _h
Name	Pre-defined error field
Object code	ARRAY
Data type	Unsigned32

Table B.13 - 1003_h Value Description

Sub-index	00 _h , number of errors
Meaning	Number of error entries
Access	Read-write
PDO mapping	—
Value range	0 4
Default value	0
Category	—

Sub-index	01 _h – 04 _h , error field
Meaning	Error number
Access	Read only
PDO mapping	—
Value range	_
Default value	0
Category	_

Bit Coding Sub-index 00_h ... 04_h

Bytes 0 through 15 are dedicated for error codes.

Bytes 16 through 31 are dedicated for additional error information, not assigned in the device.

1005_h COB ID SYNC Message

The object specifies the COB ID of the SYNC object.

The device can only receive SYNC messages.

The COB ID can be changed in the NMT state "Pre-Operational".

Table B.14 - 1005_h Object Description

Index	1005 _h
Name	COB ID SYNC
Object code	VAR
Data type	Unsigned32

Table B.15 - 1005_h Value Description

Sub-index	00 _h , COB ID SYNC
Meaning	Identifier of the synchronization object
Access	Read-write
PDO mapping	—
Value range	04294967295
Default value	0000 0080 _h
Category	Yes

1007_h Sync Window Length

Contains the length of the time window for synchronous PDOs in microseconds.

Table B.16 - 1007h Object Description

Index	1007 _h
Name	Sync window length
Object code	VAR
Data type	Unsigned32

Table B.17 -	1007 _h	Value	Description
--------------	-------------------	-------	-------------

Sub-index	00 _h , Sync window length
Meaning	Timing for sync PDOs
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	0000 0000 _h
Category	Yes

1008_h Mfg. Device Name

Provides the name of the device as given by the manufacturer.

Table B.18 - 1008_h Object Description

Index	1008 _h
Name	Manufacturer device name
Object code	VAR
Data type	Visible String

Table B.19 - 1008_h Value Description

Sub-index	00 _h , Manufacturer device name
Meaning	Manufacturer device name
Access	Read only
PDO mapping	—
Value range	Visible String
Default value	CANopen LMD Motion Control Node
Category	—

1009_h Mfg. Hardware Version

Provides the hardware version of the device as given by the manufacturer.

Table B.20 - 1009_h Object Description

Index	1009 _h
Name	Manufacturer hardware version
Object code	VAR
Data type	Visible String

Table B.21 - 1009_h Value Description

Sub-index	00 _h , Manufacturer hardware version
Meaning	Manufacturer hardware version
Access	Read only
PDO mapping	—
Value range	Visible String
Default value	V1.00
Category	—

100A_h Mfg. Software Version

Provides the software version of the device as given by the manufacturer.

Table B.22 - 100A_h Object Description

Index	100A _h
Name	Manufacturer software version
Object code	VAR
Data type	Visible String

Table B.23 - 100A_h Value Description

Sub-index	00 _h , Manufacturer software version
Meaning	Manufacturer software version
Access	Read only
PDO mapping	—
Value range	Visible String
Default value	V5.48
Category	—

100C_h Guard Time

The object specifies the time span for connection monitoring (Node Guarding) of an NMT slave.

The time span for connection monitoring of an NMT master results from the time span "guard time" multiplied by the factor "life time", object Life time factor(100Dh).

The time span can be changed in the NMT state "Pre-Operational".

Table B.24 - 100Ch Object Description

Index	100C _h
Name	Guard time
Object code	VAR
Data type	Unsigned16

Table B.25 - 100C_h Value Description

Sub-index	00 _h , Guard time
Meaning	Guard time
Access	Read-write
PDO mapping	—
Value range	065535
Default value	0000 _h
Category	Yes

100D_h Life Time Factor

The object specifies the factor that, together with the time span "guard time", results in the time interval for connection monitoring of an NMT master. Within this period, the NMT slave device expects a monitoring request via Node Guarding from the NMT master.

life time = guard time * life time factor

The value "0" deactivates monitoring of the NMT master.

If there is no connection monitoring through the NMT master during the time interval "life time", the device signals an error and switches to the operating state Error.

The time factor can be changed in the NMT state "Pre-Operational". The time span "guard time" is set with the object **Guard time (100Ch)**.

Table B.26 - 100D_h Object Description

Index	100D _h
Name	Life time factor
Object code	VAR
Data type	Unsigned8

Table B.27	- 100D _h	Value	Description
------------	---------------------	-------	-------------

Sub-index	00 _h , Life time factor
Meaning	Life time factor
Access	Read-write
PDO mapping	—
Value range	0255
Default value	00 _h
Category	Yes

1010_h Store Parameters

This object supports the saving of parameters in NVM. By read access the device provides information about its saving capabilities. Several parameter groups are distinguished:

- Sub-Index 0 contains the largest sub-index that is supported.
- Sub-Index 1 refers to all parameters that can be stored on the device.
- Sub-Index 2 refers to communication related parameters (Index 1000_h 1FFF_h manufacturer specific communication parameters).
- Sub-Index 3 refers to application related parameters (Index 6000_h 9FFF_h manufacturer specific application parameters).
- Sub-index 4 refers to manufacturer specific parameters.

In order to avoid storage of parameters by mistake, storage is only executed when a specific signature is written to the appropriate Sub-Index. The signature is "save".

Figure B.1 - Storage Write Access Signature

Signature ISO 8859	MSB			LSB
ASCII	е	V	а	S
hex	65h	76h	61h	73h

On reception of the correct signature in the appropriate sub-index, the device stores the parameter and then confirms the SDO transmission (initiate download response). If the storing failed, the device responds with an Abort SDO Transfer (**abort code: 0606 0000**_h).

If an incorrect signature is written, the device refuses to store and responds with Abort SDO Transfer (abort code: $0800 \ 002x_h$).

On read access to the appropriate Sub-Index the device provides information about its storage functionality with the following format:

Figure B.2 - Storage Read Access Structure

	Unsigned32		
	MSB	LSB	
bits	31 2	1	0
	Reserved (=0)	0/1	0/1

Table B.28 - Structure of Read Access

Bit	Value	Meaning
31 2	0	Reserved (=0)
1	0	Device does not save the parameters autono-
		mously
	1	Device does save the parameters autonomously
2	0	Device does not save the parameters on command
	1	Device does save the parameters on command

Autonomous saving means that a device stores the storable parameters in a non-volatile manner without user request.

Table B.29 - 1010_h Object Description

Index	1010 _h
Name	Store parameters
Object code	Array
Data type	Unsigned32

Table B.30 - 1010_h Value Description

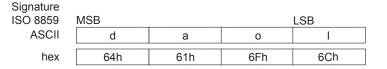
Sub-index	00 _h , Largest supported sub-index
Meaning	Largest supported sub-index
Access	Read only
PDO mapping	—
Value range	1 _h - 4 _h
Default value	4 _h
Category	—

Sub-index	01 _h , Save all parameters
Meaning	Save all parameters
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	_
Category	—

Sub-index	02 _h , Save communication parameters
Meaning	Save communication parameters
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	—
Category	—

Sub-index	03 _h , Save application parameters
Meaning	Save application parameters
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	—
Category	_

Sub-index	04 _h , Save manufacturer parameters
Meaning	Save manufacturer parameters
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	_
Category	_


1011_h Restore default parameters

With this object, the default values of parameters according to the communication or device profile are restored. By read access the device provides information about its capabilities to restore these values. Several parameter groups are distinguished:

- 1. Sub-Index 0 contains the largest sub-index that is supported.
- 2. Sub-Index 1 refers to all parameters that can be restored.
- 3. Sub-Index 2 refers to communication related parameters (**Index 1000h 1FFFh** manufacturer specific communication parameters).
- 4. Sub-Index 3 refers to application related parameters (**Index 6000h 9FFFh** manufacturer specific application parameters).
- 5. At Sub-Index 4 127 manufacturers may restore their individual choice of parameters.
- 6. Sub-Index 128 254 are reserved for future use.

In order to avoid the restoring of default parameters by mistake, restoring is only executed when a specific signature is written to the appropriate sub-index. The signature is "load".

Figure B.3 - Restore Default Parameters Write Access Signature.

On reception of the correct signature in the appropriate sub-index, the device restores the default parameters and then confirms the SDO transmission (initiate download response). If the restoring failed, the device responds with an Abort SDO Transfer (**abort code:** 0606 0000h). If an incorrect signature is written, the device refuses to restore the defaults and responds with an Abort SDO Transfer (**abort code:** 0800 002xh).

The default values are set valid after the device is reset (reset node for sub-index $1_h - 4_h$, reset communication for sub-index 2_h) or power cycled.

On read access to the appropriate sub-index the device provides parameter restoring capability with the following format:

Figure B.4 - Restore Default Parameters Write Access Structure.

	Unsigned32	
	MSB LSB	
bits	31 1	0
	Reserved (=0)	0/1

Table B.31 - Structure of Write Access

В	Bit	Value	Meaning	
31.	1	0	Reserved (=0)	
1		0	Device does not restore the default parameters	
		1	Device does restore the default parameters	

Table B.32 - 1011_h Object Description

Index	1011 _h
Name	Restore default parameters
Object code	Array
Data type	Unsigned32

Table B.33 - 1011_h Value Description

Sub-index	00 _h , Largest supported sub-index
Meaning	Largest supported sub-index
Access	Read only
PDO mapping	—
Value range	1 _h - 4 _h
Default value	4h
Category	—

Sub-index	01 _h , Restore all parameters
Meaning	Restore all parameters
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	—
Category	—

Sub-index	02 _h , Restore communication parameters
Meaning	Restore communication parameters
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	—
Category	_

Sub-index	03 _h , Restore application parameters
Meaning	Restore application parameters
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	—
Category	—

Sub-index	04 _h , Restore manufacturer parameters
Meaning	Restore manufacturer parameters
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	—
Category	—

1012_h COB-ID Time Stamp Object

Index 1012_h defines the COB-ID of the time-stamp object (TIME). Further, it defines whether the device consumes the TIME or whether the device generates the TIME.

Figure B.5 - Structure of the COB-ID TIME Entry

	MSE	3			LSB
Bits:	31	30	29	28 11	10 0
11-bit ID	0/1	0/1	0	000000000000000000000000000000000000000	11-bit Identifier
29-bit ID	0/1	0/1	1	29-bit Identifier	

Table B.34 - Description of the TIME COB-ID Entry

Bit	Value	Meaning	
31 (MSb)	0	Device does not consume the TIME message	
	1	Device consumes the TIME message	
30	0	Device does not produce the TIME message	
	1	Device produces the TIME message	
29	0	11-bit ID (CAN 2.0A)	
	1	29-bit ID (CAN 2.0B)	
28 11	0	If bit 29=0	
	X	If bit 29=1: bits 28 11 of 29 bit TIME-COB-	
		ID	
10 0 (LSb)	Х	Bits 10 0 of TIME-COB-ID	

Bits 29, 30 may be static (not changeable). If a device is not able to generate TIME messages, an attempt to set bit 30 results in an abort message (abort code: $0609 \ 0030_h$).

Table B.35 - Object Description

Index	1012 _h
Name	COB-ID time stamp message
Object code	VAR
Data type	Unsigned32

Table B.36 - Value Description

Sub-index	00 _h , COB-ID time stamp message
Meaning	COB-ID time stamp message
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	0000 0100 _h
Category	—

1014_h COB-ID Emergency Error Object

Index 1014_{h} defines the COB-ID of the Emergency Object (EMCY).

Figure B.6 - Structure of the EMCY Identifier Entry

	MSE	3			LSB
Bits:	31	30	29	28 11	10 0
11-bit ID	0/1	0	0	000000000000000000000000000000000000000	11-bit Identifier
29-bit ID	0/1	0	1	29-bit Identifier	

 Table B.37 - Description of the COB-ID Entry

Bit	Value	Meaning	
31 (MSb)	0	EMCY exists / is valid	
	1	EMCY does not exist / is not valid	
30	0	Reserved (always 0)	
29	0	11-bit ID (CAN 2.0A)	
	1	29-bit ID (CAN 2.0B)	
28 11	0	If bit 29=0	
	Х	If bit 29=1: bits 28 11 of 29 bit COB-ID	
10 0 (LSb)	X	Bits 10 0 of COB-ID	

With devices supporting the standard CAN frame type only, an attempt to set bit 29 results in an abort message (**abort code: 0609 0030h**). It is not allowed to change Bits 0-29, while the object exists (Bit 31=0).

Table B.38 - 1014_h Object Description

Index	1014 _h
Name	COB-ID emergency message
Object code	VAR
Data type	Unsigned32

Table B.39 - 1014_h Value Description

Sub-index	00 _h , COB-ID emergency message
Meaning	COB-ID emergency message
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	0080 _h + node ID
Category	—

1015_h Inhibit Time EMCY Object

The inhibit time for the EMCY message can be adjusted via this entry. If this entry exists it must be writable in the object dictionary. The time has to be a multiple of 100μ s.

Table B.40 - 1015_h Object Description

Index	1015 _h
Name	Inhibit time EMCY
Object code	VAR
Data type	Unsigned16

Table B.41 - 1015_h Value Description

Sub-index	00 _h , Inhibit time EMCY
Meaning	Inhibit time EMCY
Access	Read-write
PDO mapping	—
Value range	Unsigned16
Default value	0000 _h
Category	_

1017_h Producer Heartbeat Time

The producer heartbeat time defines the cycle time of the heartbeat. The producer heartbeat time is 0 if it is not used. The time has to be a multiple of 1ms.

Table B.42 - 1017_h Object Description

Index	1017 _h
Name	Producer heartbeat time
Object code	VAR
Data type	Unsigned16

Table B.43 - 1017_h Value Description

Sub-index	00 _h , Producer heartbeat time
Meaning	Producer heartbeat time
Access	Read-write
PDO mapping	—
Value range	Unsigned16
Default value	0000 _h
Category	—

1018_h Identity Object

The object at index 1018_h contains general information about the device. The Vendor ID (sub-index 1_h) contains a unique value allocated to each manufacturer.

The manufacturer-specific product code (sub-index 2_h) identifies a specific device version. The manufacturer-specific revision number (sub-index 3_h) consists of a major revision number and a minor revision number. The major revision number identifies a specific CANopen behavior. If the CANopen functionality is expanded, the major revision has to be incriminated. The minor revision number identifies different versions with the same CANopen behavior.

Figure B.7 - Structure of the Revision Number

Byte:	MSB		LSB
	31	16 15	0
	Major Revision Number	Minor Revision N	lumber

The manufacturer-specific serial number (sub-index 4_h) identifies a specific device.

Table B.44 - 1018_h Object Description

Index	1018 _h
Name	Identity object
Object code	Array
Data type	Unsigned32

Table B.45 - 1018_h Value Description

Sub-index	00 _h , Largest supported sub-index
Meaning	Largest supported sub-index
Access	Read only
PDO mapping	—
Value range	1 _h - 4 _h
Default value	4 _h
Category	—

Sub-index	01 _h , Vendor ID
Meaning	Vendor ID
Access	Read-only
PDO mapping	—
Value range	Unsigned32
Default value	0000 021B _h
Category	—

Sub-index	02 _h , Product code
Meaning	Product code
Access	Read only
PDO mapping	—
Value range	Unsigned32
Default value	0000 0000 _h
Category	—

Sub-index	03 _h , Revision number
Meaning	Revision number
Access	Read only
PDO mapping	—
Value range	Unsigned32
Default value	0000 0507 _h
Category	—

Sub-index	04 _h , Serial number
Meaning	Serial number
Access	Read only
PDO mapping	—
Value range	Unsigned32
Default value	_
Category	_

1400 – 1403_h Receive PDO Communications Parameter

These objects contain the communication parameters for the PDOs the device is able to receive. The type of the PDO communication parameter (20_h) is described in CiA 301: CANopen Application Layer and Communications Profile. The sub-index 0_h contains the number of valid entries within the communication record. Its value is at least 2. If inhibit time supported the value is 3. The COB-ID of the PDO resides at sub-index 1_h . This entry has been defined as UNSIGNED32 in order to cater for 11-bit CAN Identifiers (CAN 2.0A) as well as for 29-bit CAN identifiers (CAN 2.0B).

Figure B.8 - Structure of the PDO COB-ID Entry

	MSB				LSB
Bits:	31	30	29	28 11	10 0
11-bit ID	0/1	0/1	0	000000000000000000000000000000000000000	11-bit Identifier
29-bit ID	0/1	0/1	1	29-bit Identifier	

Table B.46 - Description of the PDO COB-ID Entry

Bit	Value	Meaning
31 (MSb)	0	PDO Exists/Is Valid
	1	PDO Does Not Exist/Is Not Valid
30	0	RTR is Allowed on this PDO
	1	RTR is Not Allowed on this PDO
29	0	11-bit ID (CAN 2.0A)
	1	29-bit ID (CAN 2.0B)
28 11	0	If bit 29=0
	Х	If bit 29=1: bits 28 11 of 29 bit COB-ID
10 0 (LSb)	Х	Bits 10 0 of COB-ID

The PDO valid/not valid allows the selection of which PDOs are used in the operational state. There may be PDOs fully configured (by default) but not used, and therefore set to "not valid" (deleted). This feature is necessary for devices supporting more than 4 receive process data objects (RPDOs) or 4 transfer process data objects (TPDOs), because each device has only default identifiers for the first four RPDOs/TPDOs. Devices supporting the standard CAN frame type only or which do not support Remote Frames, an attempt to set bit 29 to 1 or bit 30 to 0 results in an abort message (**abort code: 0609 0030h**). It is not allowed to change bit 0-29 while the PDO exists (Bit 31=0).

The transmission type (sub-index 2) defines the transmission/reception character of the PDO. On an attempt to change the value of the transmission type to a value that is not supported by the device, an abort message (abort code: $0609 \ 0030_h$) is generated.

Transmission type	PDO transmission				
	cyclic	acyclic	sync	async	RTR only
0		Х	Х		
1 – 240	X		Х		
241 – 251	Reserve	d			
252			Х		Х
253				X	Х
254				Х	
255				X	

Table B.47 - Description of the PDO COB-ID Entry

Synchronous (transmission types 0-240 and 252) means that the transmission of the PDO is related to the SYNC object. Preferably the devices use the SYNC as a trigger to output or actuate based on the previous synchronous Receive PDO respectively to update the data transmitted at the following synchronous Transmit PDO. Details of this mechanism depend on the device type and are defined in the device profile if applicable.

Asynchronous means that the transmission of the PDO is not related to the SYNC object. A transmission type of zero means that the message is transmitted synchronously with the SYNC object, but not periodically. A value between 1 and 240 means that the PDO is transferred synchronously and cyclically. The transmission type indicating the number of SYNC which are necessary to trigger PDO transmissions.

Receive PDOs are always triggered by the following SYNC upon reception of data and independent of the transmission types 0 - 240. The transmission types 252 and 253 mean that the PDO is only transmitted on remote transmission request. At transmission type 252, the data is updated (but not sent) immediately after reception of the SYNC object.

At transmission type 253, the data is updated at the reception of the remote transmission request (hardware and software restrictions may apply). These value are only possible for T_PDOs .

For T_PDOs transmission, type 254 means the application event is manufacturer specific (manufacturer specific part of the Object Dictionary). Transmission type 255 means the application event is defined in the device profile. R_PDOs with that type trigger the update of the mapped data with the reception.

Sub-index 3_h contains the inhibit time. This time is a minimum interval for PDO transmission. The value is defined as a multiple of 100µs. It is not allowed to change the value while the PDO exists (Bit 31 of sub-index 1 is 0).

Sub-index 4h is reserved. It does not have to be implemented, in this case read or write access leads to Abort SDO Transfer (abort code: 0609 0011h).

In mode 254/255 additionally an event time can be used for T_PDO. If an event timer exists for a T_PDO (value not equal to 0), the elapsed timer is considered to be an event. The event timer elapses as a multiple of 1 ms of the entry in sub-index 5_h of the T_PDO. This event will cause the transmission of this T_PDO in addition to otherwise defined events. The occurrence of the events set the timer. Independent of the transmission type the R_PDO event timer is used to recognize the expiration of the R_PDO.

Table B.48 - 1400 – 1403_h Object Description

Index	1400 – 1403 _h
Name	1st, 2nd, 3rd and 4th receive PDO parameters
Object code	Record
Data type	_

Table B.49 -	1400 -	1403 _h	Value	Description
--------------	--------	-------------------	-------	-------------

Sub-index	00 _h , Largest supported sub-index
Meaning	Largest supported sub-index
Access	Read only
PDO mapping	—
Value range	Unsigned8
Default value	05 _h
Category	—

Sub-index	01 _h , COB-ID used by PDO
Meaning	COB-ID used by PDO
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	1400 _h = 0200 _h + node ID
	1401 _h = 0300 _h + node ID
	1402 _h = 0400 _h + node ID
	1403 _h = 0500 _h + node ID
Category	Yes

Sub-index	02 _h , Transmission type
Meaning	Transmission type
Access	Read-write
PDO mapping	—
Value range	Unsigned8
Default value	255 (asynchronous)
Category	Yes

Sub-index	03 _h , Inhibit time
Meaning	Inhibit time
Access	Read-write
PDO mapping	—
Value range	Unsigned16
Default value	0000 _h
Category	Yes

Sub-index	05 _h , Event timer
Meaning	Event timer
Access	Read-write
PDO mapping	—
Value range	Unsigned16
Default value	0000 _h
Category	Yes

1600 – 1603_h Receive PDO Mapping Parameter

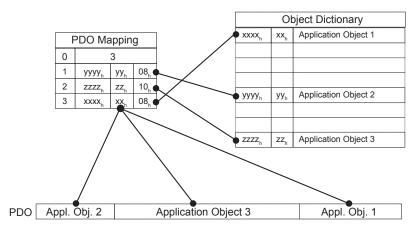
Contains the mapping for the PDOs the device is able to receive. The type of the PDO mapping parameter (21_h) is described in CiA 301: CANopen Application Layer and Communications Profile. The sub-index 0_h contains the number of valid entries within the mapping record. This number of entries is also the number of the application variables which is transmitted/received with the corresponding PDO. The sub-indices from 1h to number of entries contain the information about the mapped application variables. These entries describe the PDO contents by their index, sub-index, and length. All three values are hexadecimal coded. The length entry contains the length of the object in bit $(1..40_h)$.

This parameter can be used to verify the overall mapping length. It is mandatory.

The structure of the entries from sub-index $1_h - 40_h$ is as follows:

Figure B.9 - Structure of the PDO Mapping Entry

Byte:	MSB		LSB
	Index (16-bit)	Sub-Index (8-Bit)	Object Length (8-Bit)


If the change of the PDO mapping cannot be executed (i.e., the PDO length is exceeded or the SDO client attempts to map an object that cannot be mapped) the device responds with an Abort SDO Transfer Service.

Sub-index 0 determines the valid number of objects that have been mapped. To change the PDO mapping, first the PDO has to be deleted and the sub-index 0 must be set to 0 (mapping is deactivated). Then the objects can be remapped. When a new object is mapped by writing a sub-index between 1 and 64, the device may check whether the object specified by index / sub-index exists. If the object does not exist or the object cannot be mapped, the SDO transfer must be aborted with the Abort SDO Transfer Service using one of the abort codes $0602\ 0000_{h}$ or $0604\ 0041_{h}$.

After all objects are mapped, sub-index 0 is set to the valid number of mapped objects. Finally the PDO will be created by writing to its communication parameter COB-ID. When subindex 0 is set to a value >0 the device may validate the new PDO mapping before transmitting the response of the SDO service. If an error is detected the device has to transmit the Abort SDO Transfer Service with one of the abort codes $0602\ 0000_h$, $0604\ 0041_h$, or $0604\ 0042_h$.

When sub-index 0 is read, the actual number of valid mapped objects is returned. If data types (Index 1_h - 7_h) are mapped they serve as "dummy entries". The corresponding data in the PDO is not evaluated by the device. This optional feature is useful to transmit data to several devices using one PDO, each device only utilizing a part of the PDO. It is not possible to create a dummy mapping for a T_PDO.

A device that supports dynamic mapping of PDOs must support this during the PREOPERA-TIONAL state. If dynamic mapping during the state OPERATIONAL is supported, the SDO client is responsible for data consistency.

Figure B.10 - Principle of PDO Mapping

Table B.50 - 1600 – 1603_h Object Description

Index	1600 – 1603 _h
Name	1st, 2nd, 3rd, and 4th receive PDO mapping
Object code	Record
Data type	—

Table B.51 - 1600 – 1603_h Value Description

Sub-index	00 _h , Number of mapped application objects
Meaning	Number of mapped application objects
Access	Read-write
PDO mapping	—
Value range	1 – 64
Default value	$1600_{h} = 1$ $1601_{h} = 2$ $1602_{h} = 2$ $1603_{h} = 2$
Category	Yes

Sub-index	01 _h , PDO mapping 1st application object
Meaning	PDO mapping 1st application object
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	$1600_{h} = 6040\ 0010_{h}$ $1601_{h} = 6040\ 0010_{h}$ $1602_{h} = 6040\ 0010_{h}$
	1603 _h = 6040 0010 _h
Category	Yes

Sub-index	02 _h , PDO mapping 2nd application object
Meaning	PDO mapping 2nd application object
Access	Read-write
PDO mapping	_
Value range	Unsigned32
Default value	$1600_{h} = 0000 \ 0000_{h}$ $1601_{h} = 607A \ 0020_{h} \ (Profile \ position - target \ position)$ $1602_{h} = 60FF \ 0020_{h} \ (Profile \ velocity - target \ velocity)$ $1603_{h} = 6071 \ 0020_{h} \ (Profile \ torque - target \ torque)$
Category	Yes

Sub-index	03 – 08 _h , PDO mapping <i>n</i> th application object
Meaning	PDO mapping <i>n</i> th application object
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	1600 _h = 0000 0000 _h
	1601 _h = 0000 0000 _h
	1602 _h = 0000 0000 _h
	1603 _h = 0000 0000 _h
Category	Yes

1800 – 1803_h Receive PDO Mapping Parameter

Contains the communication parameters for the PDOs the device is able to transmit. The type of the PDO communication parameter (20_h) is described in CiA 301: CANopen Application Layer and Communications Profile. A detailed description of the entries is done in the section for the Receive PDO Communication Parameter ($1400_h - 1403_h$).

Table B.52 - 1800 – 1803_h Object Description

Index	1800 – 1803 _h
Name	1st, 2nd, 3rd, and 4th transmit PDO parameters
Object code	Record
Data type	—

Table B.53 - 1800 – 1803_h Value Description

Sub-index	00 _h , Largest supported sub-index
Meaning	Largest supported sub-index
Access	Read only
PDO mapping	—
Value range	Unsigned8
Default value	05 _h
Category	—

Sub-index	01 _h , COB-ID used by PDO
Meaning	COB-ID used by PDO
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	$1800_{h} = 0180_{h} + \text{ node ID}$
	1801 _h = 0280 _h + node ID
	1802 _h = 0380 _h + node ID
	1803 _h = 0480 _h + node ID
Category	Yes

Sub-index	02 _h , Transmission type
Meaning	Transmission type
Access	Read-write
PDO mapping	—
Value range	Unsigned8
Default value	255 (asynchronous)
Category	Yes

Sub-index	03 _h , Inhibit time
Meaning	Inhibit time
Access	Read-write
PDO mapping	—
Value range	Unsigned16
Default value	0000 _h
Category	Yes

Sub-index	05 _h , Event timer
Meaning	Event timer
Access	Read-write
PDO mapping	—
Value range	Unsigned16
Default value	1800 _h = 0
	1801 _h = 100
	1802 _h = 100
Category	Yes

1A00 – 1A03_h Transmit PDO Mapping Parameter

These objects contain the mapping for the PDOs the device is able to transmit. The type of the PDO mapping parameter (21_h) is described in CiA 301: CANopen Application Layer and Communications Profile. A detailed description of the entries can be found in "1600 – 1603h Receive PDO Mapping Parameter" on page 121.

Table B.54 - 1A00 – 1A03h Object Description

Index	1A00 – 1A03 _h
Name	1st, 2nd, and 3rd transmit PDO mapping
Object code	Record
Data type	—

Table B.55 - 1A00 – 1A02_h Value Description

Sub-index	00 _h , Number of mapped application objects
Meaning	Number of mapped application objects
Access	Read-write
PDO mapping	—
Value range	1 - 64
Default value	1A00 _h = 1
	1A01 _h = 2
	1A02 _h = 2
	1A03 _h = 1
Category	Yes

Sub-index	01 _h , PDO mapping 1st application object
Meaning	PDO mapping 1st application object
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	1A00 _h = 6041 0010 _h (Status Word)
	1A01 _h = 6041 0010 _h (Status Word)
	1A02 _h = 6041 0010 _h (Status Word)
	1A03 _h = 6041 0010 _h (Status Word)
Category	Yes

Sub-index	02 _h , PDO mapping 2nd application object
Meaning	PDO mapping 2nd application object
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	1800 _h = 0000 0000 _h
	1801 _h = 6064 0020 _h (Profile position – position
	actual value)
	1802 _h = 606C 0020 _h (Profile velocity – velocity
	actual value)
	1803 _h = 0000 0000 _h
Category	Yes

Sub-index	03 – 08 _h , PDO mapping nth application object
Meaning	PDO mapping nth application object
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	$1600_{h} = 0000 \ 0000_{h}$ $1601_{h} = 0000 \ 0000_{h}$ $1602_{h} = 0000 \ 0000_{h}$ $1603_{h} = 0000 \ 0000_{h}$
Category	Yes

Details of Object Group 2000h (Mfg Specific)

The objects detailed in this section are Novanta IMS manufacturer specific configuration objects to configure the manufacturer object specific to the LMD CANopen node.

2000_h I/O Configuration

This object facilitates the configuration of the input and output points available on LMD CANopen devices. The sub-indexes 4 and 5 may be configured as sinking or sourcing inputs or outputs. Each bit of the sub-indices are mapped to a particular I/O point with I/O 12 being the Most Significant bit (MSb) and I/O 1 being the Least Significant bit (LSb). The configuration options are:

- 1. Sub-Index 01_h: Reserved
- 2. Sub-Index 02_h: Reserved
- 3. Sub-Index 03_h: Reserved
- Sub-Index 04_h: This allows the configuration of inputs to read inverted polarity. By default this is deactivated and setting the bit to a 1 will change the invert polarity read by the input. See Optional Application FE, Object 60DF.
- Sub-Index 05_h: This allows the configuration of outputs to invert the output polarity. See Optional Application FE, Object 60FE.

The I/O configuration is saved using the Store Parameters Object (1010_h).

Table B.56 -	2000 _h	Object	Description
--------------	-------------------	--------	-------------

Index	2000 _h
Name	I/O configuration
Object code	ARRAY
Data type	Unsigned8

Table B.57 - 2000_h Value Description

Sub-index	00 _h , Number of entries
Meaning	Number of entries
Access	Read only
PDO mapping	_
Value range	—
Default value	05 _h
Category	_

Sub-index	01 _h - 03 _h
Meaning	Reserved
Access	—
PDO mapping	—
Value range	—
Default value	—
Category	Yes

Sub-index	04 _h , Configure as polarity in
Meaning	Configure as polarity in (See object 60FD _h sub- index 01 _h)
Access	Read-write
PDO mapping	—
Value range	00 – FF _h
Default value	00 _h
Category	Yes

Sub-index	05 _h , Configure as polarity out
Meaning	Configure as polarity out
Access	Read-write
PDO mapping	—
Value range	00 – FF _h
Default value	00 _h (See object 60FE _h sub-index 01 _h)
Category	Yes

2002_h Configure Input Switches

Object 2002_h facilitates the configuration of input switches. Input switches may be configured as the following types:

- 1. Home
- 2. Positive Limit
- 3. Negative Limit
- 4. Inhibit (Inhibit Switch function is configured by Object 2007_h)

Table B.58 - 2002_h Object Description

Index	2002 _h
Name	Configure input switches
Object code	ARRAY
Data type	Unsigned8

Table B.59 - 2002_h Value Description

Sub-index	00 _h , Number of entries
Meaning	Number of entries
Access	Read only
PDO mapping	—
Value range	—
Default value	04 _h
Category	—

Sub-index	01 _h , Configure input as home
Meaning	Configure input as home switch (I/O point bit(s) =
	1 _b to select as home)
Access	Read-write
PDO mapping	—
Value range	00 – FF _h
Default value	00 _h
Category	Yes

Sub-index	02 _h , Configure input as positive limit
Meaning	Configure input as + Limit (I/O point bit(s) = 1b to
	select as + limit)
Access	Read-write
PDO mapping	—
Value range	00 – FF _h
Default value	00 _h
Category	Yes

Sub-index	03 _h , Configure input as negative limit
Meaning	Configure input as – Limit (I/O point bit(s) = 1 _b to
	select as – limit)
Access	Read-write
PDO mapping	_
Value range	00 – FF _h
Default value	00 _h
Category	Yes

Sub-index	04 _h , Configure inhibit switch
Meaning	Configure inhibit switch (I/O point bit(s) = 1 _b to se-
	lect as inhibit). Use object 2007 _h to define inhibit
	function.
Access	Read-write
PDO mapping	—
Value range	00 – FF _h
Default value	00 _h
Category	Yes

2004_h Configure Input Filter Mask

The Input filter mask object configures the device to filter the selected inputs. Sub-indices 01_h through 04_h define the inputs to which filtering will be applied. Object 2006_h defines the filter time applied to each input.

Figure B.11 - Input Filter Mask

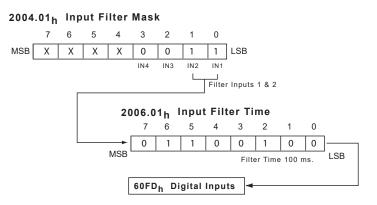


Table B.60 - 2004_h Object Description

Index	2004 _h
Name	Configure input mask
Object code	ARRAY
Data type	—

Table B.61 -	2004 _h	Value	Description
--------------	-------------------	-------	-------------

Sub-index	00h, Number of entries
Meaning	Number of entries
Access	Read only
PDO mapping	—
Value range	—
Default value	08h
Category	—

Sub-index	01h, Configure mask for Input 1
Meaning	Configure mask for Input 1
Access	Read-write
PDO mapping	—
Value range	00 – FFh
Default value	01h
Category	Yes

Sub-index	02 _h , Configure mask for Input 2
Meaning	Configure mask for Input 2
Access	Read-write

PDO mapping	_
Value range	00 – FF _h
Default value	02 _h
Category	Yes

Sub-index	03 _h , Configure mask for Input 3
Meaning	Configure mask for Input 3
Access	Read-write
PDO mapping	—
Value range	00 – FF _h
Default value	04 _h
Category	Yes

Sub-index	04 _h , Configure mask for Input 4
Meaning	Configure mask for Input 4
Access	Read-write
PDO mapping	—
Value range	00 – FF _h
Default value	08 _h
Category	Yes

Sub-index	05 _h - 08 _h , reserved
Meaning	Reserved
Access	Reserved
PDO mapping	—
Value range	—
Default value	—
Category	Yes

2006_h Configure Input Filter Time

This object sets the input filter time in milliseconds. Each sub-index applies to a specific input where sub-index 01_h applies to input 1, sub-index 02_h applies to input 2, etc.

Table B.62 - 2006_h Object Description

Index	2006 _h
Name	Configure input filter
Object code	ARRAY
Data type	—

Table B.63 - 2006_h Value Description

Sub-index	00 _h , Number of entries
Meaning	Number of entries
Access	Read only
PDO mapping	—
Value range	—
Default value	08 _h
Category	—

Sub-index	01 _h , Configure filter for Input 1
Meaning	Configure filter for Input 1
Access	Read-write
PDO mapping	—
Value range	00 – FF _h
Default value	00 _h
Category	Yes

Sub-index	02 _h , Configure filter for Input 2
Meaning	Configure filter for Input 2
Access	Read-write
PDO mapping	—
Value range	00 – FF _h
Default value	00 _h
Category	Yes

Sub-index	03 _h , Configure filter for Input 3
Meaning	Configure filter for Input 3
Access	Read-write
PDO mapping	—
Value range	00 – FF _h
Default value	00 _h
Category	Yes

Sub-index	05 _h , Configure filter for Input 4
Meaning	Configure filter for Input 4
Access	Read-write
PDO mapping	—
Value range	00 – FF _h
Default value	00 _h
Category	Yes

Sub-index	05 _h , Configure filter for Input 9
Meaning	Configure filter for Input 9
Access	Read-write
PDO mapping	—
Value range	00 – FF _h
Default value	00 _h
Category	Yes

Sub-index	06 _h , Configure filter for Input 10
Meaning	Configure filter for Input 10
Access	Read-write
PDO mapping	—
Value range	00 – FF _h
Default value	00 _h
Category	Yes

Sub-index	07 _h , Configure filter for Input 11
Meaning	Configure filter for Input 11
Access	Read-write
PDO mapping	—
Value range	00 – FF _h
Default value	00 _h
Category	Yes

Sub-index	08 _h , Configure filter for Input 12	
Meaning	Configure filter for Input 12	
Access	Read-write	
PDO mapping	—	
Value range	00 – FF _h	
Default value	00 _h	
Category	Yes	

2007_h Inhibit Switch Reaction

This object allows the user to configure different actions for an inhibit switch (see Object 2002h, Sub-index 4h).

This object will function through controlword overwrites and overrides. The inhibit switch reaction is set using sub-index 01_{h} .

Table B.64 - 2007_h Object Description

Index	2007 _h
Name	Inhibit switch reaction
Object code	ARRAY
Data type	—

Table B.65 - 2007_h Value Description

Sub-index	00 _h , Number of entries
Meaning	Number of entries
Access	Read only
PDO mapping	—
Value range	—
Default value	01 _h
Category	—

Sub-index	01 _h , Inhibit switch reaction
Meaning	Inhibit switch reaction
Access	Read-write
PDO mapping	—
Value range	1 – 12
Default value	12
Category	Yes

Table B.66 - Inhibit Switch Reactions

Value	Meaning
0	No action
1	Error signal - Control word overwrite
2	Error signal - Control word override
3	Disable voltage command - Control word overwrite
4	Disable voltage command - Control word override
5	Quick stop command - Control word overwrite
6	Quick stop command - Control word override
7	Shutdown command - Control word overwrite
8	Shutdown command - Control word override
9	Disable operation command - Control word overwrite
10	Disable operation command - Control word override
11	Halt command - Control word overwrite
12	Halt command - Control word override

2008_h Output Definition

This object allows the user to configure one or more outputs as brake outputs. For an explanation of brake functions, see Object 2035_h : Brake Timers

Table B.67 - 2008_h Object Description

Index	2008 _h
Name	Output definition
Object code	ARRAY
Data type	

Table B.68 - 2008_h Value Description

Sub-index	00 _h , Number of entries
Meaning	Number of entries
Access	Read only
PDO mapping	—
Value range	—
Default value	02 _h
Category	—

Sub-index	01 _h , Brake output defined
Meaning	Brake output defined
Access	Read-write
PDO mapping	—
Value range	Unsigned8
Default value	00 _h
Category	Yes

Sub-index	02 _h , Target reached output defined
Meaning	Target reached output defined
Access	Read-write
PDO mapping	—
Value range	Unsigned8
Default value	00 _h
Category	Yes

Table B.69 - Brake and Target Reached Output Definition

Output selected	Setting
1	Sub-index = 01 _h
2	Sub-index = 02 _h
3	Sub-index = 04 _h

2010_h Analog Input Configuration

This object allows the user to configure the 12-bit Analog Input. There are 3 sub-indices that set the configuration properties for the input:

- 1. Sub-Index 01_h: Analog Input reading provides the value of the Analog Input.
- Sub-Index 02_h: This sets the type of device the Analog Input will read. It can be set for two modes, Voltage with ranges of 0 to 5V or 0 to 10V, or Current with an input range of 0 to 20 mA.
- 3. Sub-Index 03_h: This sets the filtering for the Analog Input. In the 0 (default) setting the filtering is off.

Table B.70 -	2010 _h	Object	Description
--------------	-------------------	--------	-------------

Index	2010 _h
Name	Analog input configuration
Object code	ARRAY
Data type	—

Table B.71 -	2010 _h	Value	Description
--------------	-------------------	-------	-------------

Sub-index	00 _h , Number of entries
Meaning	Number of entries
Access	Read only
Default value	03 _h

Sub-index	01 _h , Analog input reading
Meaning	Analog input reading
Access	Read-only
PDO mapping	Yes – T_PDO
Value range	0 – 4095 _d (0000 – FFFFh – Unsigned16)
Default value	—
Category	—

Sub-index	02 _h , Analog input configuration
Meaning	Analog input configuration
Access	Read-write
PDO mapping	—
Value range	00 _h , 02 _h , or 08 _h (Unsigned8)
Default value	00 _h
Category	Yes

Sub-index	02 _h Analog input mode
00 _h	0 to 5 V scale
02 _h	0 to 20 mA scale
08 _h	0 to 10 V scale

Sub-index	03 _h , Analog filter level
Meaning	Analog filter level
Access	Read-write
PDO mapping	—
Value range	00 – 31 _h (Unsigned8)
Default value	00 _h
Category	Yes

2014_h Auxiliary Power Input Monitoring

This object allows for the user to monitor the voltage level of the aux-power input, as well as establish low and high level advisory limits. This input provides power to logic and feedback circuitry in the event of a main power loss.

The reading is given as voltage X 10 (i.e., 24.4 VDC = 244).

Table B.72 - 2014_h Object Description

Index	2014 _h
Name	Auxiliary power input monitoring
Object code	ARRAY
Data type	—

Table B.73 - 2014_h Value Description

Sub-index	00 _h , Number of entries
Meaning	Number of entries
Access	Read only
PDO mapping	—
Value range	—
Default value	03 _h
Category	_

Sub-index	01 _h , Aux-power input reading
Meaning	Aux-power input reading
Access	Read-only
PDO mapping	Yes – T_PDO
Value range	0 – 280 _d (0000 – 0118 _h – Unsigned16)
Default value	—
Category	—

Sub-index	02 _h , Aux-power input low-level advisory
Meaning	Aux-power input low-level advisory
Access	Read-write
PDO mapping	—
Value range	0 – 280 _d (0000 – 0118 _h – Unsigned16)
Default value	00 _h
Category	Yes

Sub-index	03 _h , Aux-power input high-level advisory
Meaning	Aux-power input high-level advisory
Access	Read-write
PDO mapping	—
Value range	0 – 280 _d (0000 – 0118 _h – Unsigned16)
Default value	280 _d (0118 _h)
Category	Yes

2015_h +VDC Input Monitoring

This object allows for the user to monitor the voltage level of the motor power input (+VDC), as well as establish low and high level advisory limits.

The reading is given as voltage X 10 (i.e., 44.8 VDC = 448).

Table B.74 - 2015_h Object Description

Index	2015 _h
Name	+VDC input monitoring
Object code	ARRAY
Data type	—

Table B.75 - 2015_h Value Description

Sub-index	00 _h , Number of entries
Meaning	Number of entries
Access	Read only
PDO mapping	—
Value range	—
Default value	03 _h
Category	—

Sub-index	01 _h , +VDC input monitoring
Meaning	+VDC input monitoring
Access	Read-only
PDO mapping	Yes – T_PDO
Value range	0 – 800 _d (0000 – 0320 _h – Unsigned16)
Default value	—
Category	—

Sub-index	02 _h , +VDC input low-level advisory
Meaning	+VDC input low-level advisory
Access	Read-write
PDO mapping	—
Value range	0 – 800 _d (0000 – 0320 _h – Unsigned16)
Default value	100 _d (64 _h)
Category	Yes

Sub-index	03 _h , +VDC input high-level advisory
Meaning	+VDC input high-level advisory
Access	Read-write
PDO mapping	—
Value range	0 – 800 _d (0000 – 0320 _h – Unsigned16)
Default value	580 _d (244 _h)
Category	Yes

2016_h Backup Voltage Input Monitoring

This object is supported by LMD products with a multi-turn absolute encoder and is used in conjunction with the Absolute Encoder Back-up Battery pack, ICP0531, accessory to provide up to five years position update and retention.

Table B.76 - 2016_h Object Description

Index	2016 _h
Name	Encoder battery pack voltage
Object code	ARRAY
Data type	Integer8
Category	Optional

Table B.77 - 2016_h Entry Description

Sub-index	00 _h , Number of entries
Meaning	Number of entries
Access	Read only
PDO mapping	—
Value range	—
Default value	03 _h
Category	—

Sub-index	01 _h
Meaning	External battery voltage
Access	ro
PDO mapping	Yes
Value range	Unsigned16
Default value	—
Category	—

Sub-index	02h
Meaning	External battery low-level advisory. Setting to 0
	disables the advisory.
Access	rw
Value range	Unsigned16
Default value	0
Low limit	0

High limit	6500
Sub-index	03 _h
Meaning	External battery high-level advisory. Setting to 0 disables the advisory.
Access	rw
PDO mapping	—
Value range	Unsigned16
Default value	5500 (5.500V)
Category	—

2017_h Backup Voltage Input Monitoring

This object represents the voltage level of the internal back-up voltage on LMD Absolute Encoder products.

Table B.78 - 2017_h Object Description

Index	2017 _h
Name	Read internal holding voltage level
Object code	VAR
Data type	Integer8
Category	Optional

Table B.79 - 2017_h Entry Description

Sub-index	00 _h
Meaning	Internal holding voltage level in millivolts
Access	Read only
PDO mapping	—
Value range	Unsigned16
Default value	—
Category	—

2018_h PCB Temperature Options

This object represents the temperature of the printed circuit board (PCB) as measured at the microprocessor. There are 3 sub-indices:

- Sub-Index 01_h: Read-only sub-index that represents the internal temperature of the device. May be mapped to a PDO.
- Sub-Index 02_h: Temperature Advisory parameter allows for the setting of a parameter that will generate an error (Index 1003 0016 4210h) if the advisory threshold is reached. The default is 80°C.
- Sub-Index 03_h: This sub-index sets the threshold for a temperature error. Note that the outputs of the device will disable at 85°C regardless of the setting for this parameter. If reached, the error message will be located at Index 1003h. The error code is one byte in length and reads 0008 4210h.

The units for this object are degrees Celsius (°C).

Table B.80 - 2018_h Object Description

Index	2018 _h
Name	PCB temperature options
Object code	ARRAY
Data type	Signed8

Table B.81 - 2018_h Value Description

Sub-index	00 _h , Number of entries
Meaning	Number of entries
Access	Read-only
PDO mapping	—
Value range	—
Default value	03 _h
Category	—

Sub-index	01 _h , PCB temperature reading
Meaning	PCB temperature reading
Access	Read-only
PDO mapping	Yes – T_PDO
Value range	—
Default value	—
Category	—

Sub-index	02 _h , PCB temperature advisory threshold
Meaning	PCB temperature advisory threshold
Access	Read-write
PDO mapping	—
Value range	-50 to +120 _d (Signed8)
Default value	80 _d
Category	Yes

Sub-index	03 _h , PCB temperature error
Meaning	PCB temperature error
Access	Read-write
PDO mapping	—
Value range	-50 to +120 _d (Signed8)
Default value	85 _d
Category	Yes

2019_h Output h-bridge Temperature Options

This object represents the temperature of the output h-bridge as measured at the output h-bridge. There are 3 sub-indices:

- 1. Sub-Index 01_h: Read-only sub-index that reads the output h-bridge temperature of the device. May be mapped to a PDO.
- Sub-Index 02_h: Temperature Advisory parameter allows for the setting of a parameter that will generate an error (Index 1003 0016 4210h) if the advisory threshold is reached. The default is 80°C.
- Sub-Index 03_h: This sub-index sets the threshold for a temperature error. Note that the outputs of the device will disable at 85°C regardless of the setting for this parameter. If reached, the error message will be located at Index 1003h. The error code is one byte and reads 0008 4210h.

The units for this object are degrees Celsius (°C).

Table B.82 - 2018_h Object Description

Index	2018 _h
Name	Output h-bridge temperature options
Object code	ARRAY
Data type	Signed8

Table B.83 - 2018_h Value Description

Sub-index	00 _h , Number of entries
Meaning	Number of entries
Access	Read only
PDO mapping	—
Value range	—
Default value	03 _h
Category	—

Sub-index	01 _h , Output h-bridge temperature reading
Meaning	Output h-bridge temperature reading
Access	Read-only
PDO mapping	Yes – T_PDO
Value range	—
Default value	—
Category	_

Sub-index	02 _h , Output h-bridge temperature advisory thresh- old
Meaning	Output h-bridge temperature advisory threshold
Access	Read-write
PDO mapping	—
Value range	-50 to +120 _d (Signed8)
Default value	80 _d
Category	Yes

Sub-index	03 _h , Bridge temperature error
Meaning	Output h-bridge temperature error
Access	Read-write
PDO mapping	—
Value range	-50 to +120 _d (Signed8)
Default value	850 _d
Category	Yes

2020_h Hardware/Software Limit Reached

This object defines the actions taken when the Position Software Limit for Object 2022_h is reached. It consists of 2 sub-indices.

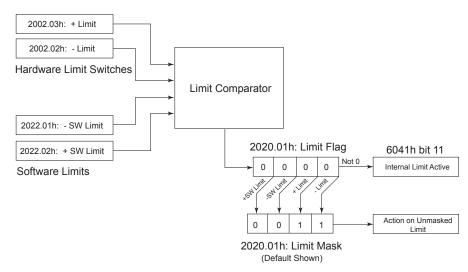

 Sub-index 01_h: Limit reached flag. This flag will be set based upon the status of a limit, it will register whether the limit reached is a hardware limit or a software limit. The statusword (6041_h), bit 11, internal limit active will set whenever the flag is not 0. The action taken for a limit reached condition will be determined by the limit mask sub-index.

Table B.84 - Description of Limit Reached Flag 2020.01h

Status	Bit 3	Bit 4	Bit 1	Bit 0
Negative hardware limit	0	0	0	1
reached				
Positive hardware limit reached	0	0	1	0
Negative software limit reached	0	1	0	0
Positive software limit reached	1	0	0	0

2. Sub-index 02_h: Limit reached mask

Figure B.12 - Software Limits as Hardware Functions

Table B.85 - 2020_h Object Description

Index	2020 _h
Name	Software limits as hardware
Object code	ARRAY
Data type	Unsigned8

Table B.86 - 2020_h Value Description

Sub-index	00 _h , Number of entries
Meaning	Number of entries
Access	Read only
PDO mapping	—
Value range	—
Default value	02 _h
Category	—

Sub-index	01 _h , Limit reached flag
Meaning	Limit reached flag
Access	Read-write
PDO mapping	—
Value range	00 – 0F _h
Default value	00 _h
Category	

Sub-index	02 _h , Limit reached mask
Meaning	Limit reached mask
Access	Read-write
PDO mapping	—
Value range	00 – 0F _h
Default value	03 _h
Category	Yes

2022_h Software Position Limits

This object defines the software limit based on set negative and positive limits set in position counts. See object 2020_h for a description of software limit functionality and configuration.

- 1. Sub-index 01h: Software negative limit
- 2. Sub-index 02h: Software positive limit

Table B.87 - 2022_h Object Description

Index	2022 _h
Name	Software position limit
Object code	ARRAY
Data type	Signed32

Table B.88 - 2022_h Value Description

Sub-index	00 _h , Number of entries
Meaning	Number of entries
Access	Read only
PDO mapping	—
Value range	—
Default value	02 _h
Category	—

Sub-index	01 _h , Software negative limit
Meaning	Software negative limit
Access	Read-write
PDO mapping	—
Value range	Signed32
Default value	8000 0000 _h
Category	

Sub-index	02 _h , Software positive limit
Meaning	Software positive limit
Access	Read-write
PDO mapping	—
Value range	Signed32
Default value	7FFF FFFF _h
Category	Yes

2030_h Output h-bridge Polarity

This object defines the polarity of the h-bridge. By default, positive represents clockwise (cw) and negative represents counter-clockwise (ccw). By changing the polarity of the output h-bridge to a negative integer between -128 to -1, the cw/ccw motor direction can be swapped.

There is no significance assigned to the number; any negative integer from -128 to -1 will reverse the output h-bridge polarity, any positive integer from 0 to 127 will reset the polarity to the default cw/ccw motor direction configuration.

Table B.89 - 2030_h Object Description

Index	2030 _h
Name	Output h-bridge polarity
Object code	VAR
Data type	Signed8

Table B.90 -	2030 _h Valu	ue Description
--------------	------------------------	----------------

Sub-index	00 _h , Output h-bridge polarity
Meaning	Output h-bridge polarity
Access	Read-write
PDO mapping	—
Value range	-128 to 127 _d
Default value	0 _d
Category	Yes

2031_h Unit Options (Encoder Enable, Trip/Capture Enable)

This object defines the configuration of the following unit options:

- 1. Encoder sync actions (bits 5, 4). Encoder sync will determine whether the encoder counter, position counter or -home offset will be the master counter for synchronizing the counters. If -home offset is used, it will function as homing 35.
- 2. Encoder enable (bit 3)
- 3. Trip output/capture input (bit 2)

Note: Encoder functions only apply to the LMD products. The MForce products do not have closed-loop capability.

Table B.91 - 2031_h Object Description

Index	2031 _h
Name	Unit options (encoder enable, trip/capture enable)
Object code	VAR
Data type	Unsigned8

Table B.92 - 2031_h Value Description

Sub-index	00 _h , Unit options (encoder enable, trip/capture enable)
Meaning	Unit options (encoder enable, trip/capture enable)
Access	Read-write
PDO mapping	—
Value range	Unsigned8
Default value	00 _h
Category	Yes

Bi	ts	7	6	5	4	3	2	1	0
Fund	ction	Х	Х	sync_	action	e/e	c/t	Х	Х
		Encod	ler auto	o-sync	action	(sync	_action	n)	
Bit 5	it 5 Bit Bits 5 and 4 control encoder sync action								
	4								
0	0	No ac	tion						
0	1	Positio	Position synced to encoder master						
1	0	Encoder synced to position master							
1	1	Position and encoder synced to –home offset							
	Encoder enable (e/e)								
Bit 3	t 3 0 Encoder not enabled								
	1	Encoder operation enabled							
	Capture/trip select (c/t)								
Bit 2	0	Will operate as a capture input (configure using							
		2033h	2033h)						
	1	Will operate as a trip output (configure using 2038h)							

Table B.93 - Description of Unit Options Object 2031.00h

2033_h Capture Input Parameters

This object configures the functionality of the capture input.

- Sub-index 01_h: Capture input control. Sets a bit that will enable the capture input. Note that the capture input must also be selected using object 2031h.
- Sub-index 02_h: Position captured flag. Displays the status of a position capture by setting the least significant bit (LSb) of an 8-bit unsigned integer. Write all ones to clear the flag.
- Sub-index 03_h: Capture input filter time. This sub-index configures the filtering for the capture input.
- 4. Sub-index 04_h: Captured position. This sub-index holds the captured position.

Table B.94 - 2033_h Object Description

Index	2033 _h
Name	Capture input parameters
Object code	REC
Data type	—

Table B.95 - 2033_h Value Description

Sub-index	00 _h , Number of entries
Meaning	Number of entries
Access	Read only
PDO mapping	—
Value range	—
Default value	04 _h
Category	—

Sub-index	01 _h , Capture input enable		
Meaning	Capture input enable		
Access	Read-write		
PDO mapping	—		
Value range	0/1 (Unsigned8)		
Default value	0 (disabled)		
Category	Yes		

Sub-index	02 _h , Position captured flag
Meaning	Position captured flag
Access	Read-write
PDO mapping	—
Value range	0/1 (Unsigned8)
Default value	0 (no position captured)
Category	Yes
Sub-index	03 _h , Capture input filter time
Meaning	Capture input filter time
Access	Read-write
PDO mapping	—
Value range	0 – 9 (Unsigned8)
Default value	0 (50ns)

Value	Filter	Value	Filter	Value	Filter
0	50ns	4	500ns	8	6.5µs
1	150ns	5	900ns	9	12.9µs
2	200ns	6	1.7µs		
3	300ns	7	3.3µs		

Sub-index	04 _h , Captured position
Meaning	Captured position
Access	Read-only
PDO mapping	—
Value range	Integer32
Default value	0 (no position)
Category	_

2034_h Output h-bridge on Settle Time

This object establishes the time in milliseconds that current in the output h-bridge is allowed to stabilize after power on. This index will delay the device entering operation enabled mode by the time set (0 to 1000ms). It is also a factor in the brake logic block. See **ob**-**ject 2035h** for functional block diagram.

Table B.96 - 2034_h Object Description

Index	2034 _h
Name	Output h-bridge on settle time
Object code	Array
Data type	Unsigned16

Table B.97 - 2034_h Value Description

Sub-index	00 _h , Number of entries
Meaning	Number of entries
Access	Read only
PDO mapping	—
Value range	—
Default value	01 _h
Category	—

Sub-index	01 _h , Output h-bridge on settle time
Meaning	Output h-bridge on settle time
Access	Read-write
PDO mapping	—
Value range	0 – 1000 _d
Default value	0
Category	Yes

2035_h Brake Settle Allow Time

This object establishes the time in milliseconds that power to the driver output h-bridge is allowed to settle prior to releasing the brake and after engaging the brake. This object works in cooperation with **object 2034.01h**, Output h-bridge on settle allow time. The sequence of events follows for a braking operation:

- Output h-bridge power turns on, object 2034.01h begins timing the amount of milliseconds specified in sub-index 01_h. This will be the time between output h-bridge power enabled and brake off. This time will also allow time for settling before initial synchronizing with encoder counts.
- Break output turns off, object 2035.02h specifies the time delay from set brake off to allow for motor movement.
- 3. Device enters the operation enabled state of the state machine. Motion occurs.
- 4. The brake will engage after cessation of motion. **object 2035.01h** specifies the time delay from set brake on to removal of output h-bridge power.

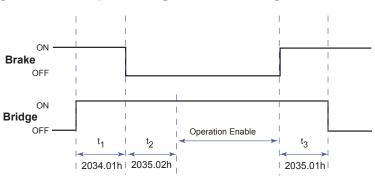
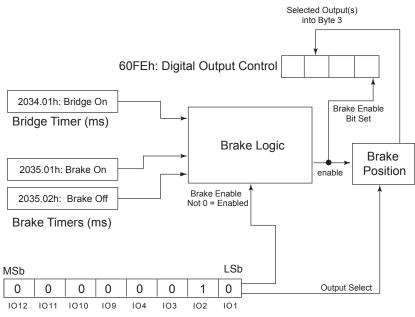



Figure B.13 - Output H-bridge to Brake Timing

Figure B.14 - Brake Functions Block Diagram

2008.01h: Output 2 Shown Selected as Brake Switch

Table B.98 - 2035h Object Description

Index	2035 _h
Name	Brake settle allow time
Object code	ARRAY
Data type	—

Table B.99 - 2035_h Value Description

Sub-index	00 _h , Number of entries
Meaning	Number of entries
Access	Read only
PDO mapping	—
Value range	—
Default value	02 _h

Category

Sub-index	01 _h , Brake on settle time
Meaning	Brake on settle time
Access	Read-write
PDO mapping	—
Value range	0 – 2000 _d (ms)
Default value	0
Category	Yes

Sub-index	02 _h , Brake off settle time
Meaning	Brake off settle time
Access	Read-write
PDO mapping	—
Value range	0 – 1000 _d (ms)
Default value	0
Category	Yes

2036_h Hold Current Delay Time

This object defines the delay in milliseconds between the device switching from the run current (**object 2204h**) to the holding current (**object 2205h**)

Table B.100 - 2036_h Object Description

Index	2036 _h
Name	Hold current delay time
Object code	VAR
Data type	Unsigned16

Table B.101 - 2036_h Value Description

Sub-index	00 _h , Hold current delay time
Meaning	Hold current delay time
Access	Read-write
PDO mapping	—
Value range	0 _d (off) or 2 to 65535 _d (ms)
Default value	500d (ms)
Category	Yes

2037_h Output h-bridge on to Encoder Settle Time

This object defines the delay, in milliseconds, between the device switching into operation enable and re-syncing the encoder position. Only applicable on LMD models equipped with an encoder.

Table B.102 -	2037 _h	Object	Description
---------------	-------------------	--------	-------------

Index	2037 _h
Name	Output h-bridge on to encoder settle time
Object code	VAR
Data type	Unsigned16

Table B.103 - 2037_h Value Description

Sub-index	00 _h , Output h-bridge on to encoder settle time
Meaning	Output h-bridge on to encoder settle time
Access	Read-write
PDO mapping	—
Value range	0 _d to 3000 _d (ms)
Default value	300 _d (ms)
Category	Yes

2038_h Trip Output Configuration

This object configures the functionality of the trip output which will pulse the output upon reaching particular **position_demand_effort_position(s)**.

Values are in Internal Units, based on 51200/rev and not necessarily scaled to user units. Also note trip is activated on position demand effort, and not actual position or encoder position.

This definition of point(s) begins with sub-index 2036.02_h (1st position of a series) then add sub-index 2036.03_h to form the specified number of trip points.

- Sub-index 01_h: Trip output control. Controls the logic and trip points and is used to set up one or multiple trip positions. Note that the trip output must also be selected using object 2031_h.
- 2. Sub-index 02_h: 1st trip point of a series. Defines the first trip point of a series of points.
- 3. Sub-index 03_h: Capture input filter time. This sub-index configures the filtering for the capture input.
- 4. Sub-index 04_h: Multiple trip point spacing. This sub-index defines the modulus, or spacing between the trip points, scaled at 51200 steps/rev.

Table B.104 - 2038h Object Description

Index	2038 _h
Name	Trip output configuration
Object code	REC
Data type	

Table B.105 - 2038_h Value Description

Sub-index	00 _h , Number of entries
Meaning	Number of entries
Access	Read only
PDO mapping	—
Value range	—
Default value	03 _h
Category	—

Sub-index	01 _h , Trip output control
Meaning	Trip output control
Access	Read-write
PDO mapping	—
Value range	Unsigned16
Default value	0000 _h
Category	Yes

Sub-index 01 _h value range		
Bit: 15	14 12	Bits: 11 0 (number of trip points)
(trip enable)		
0= disabled,	0 0 0	0=infinite, 1 – 4095=# trip points from
1=enabled		start

Sub-index	02 _h , First trip point
Meaning	First trip point
Access	Read-write
PDO mapping	—
Value range	Integer32
Default value	0000 0000 _h
Category	Yes

Sub-index	03 _h , Multiple trip point spacing
Meaning	Multiple trip point spacing
Access	Read-write
PDO mapping	—
Value range	Integer32
Default value	5120 _d
Category	Yes

2098_h Homing Configuration

This object determines the position or encoder counter status following a home. If 0, the position or encoder counter will clear following a home. The position and encoder counter will NOT be assigned, following a homing attained. The exception to this rule is when performing homing method 35.

If 1 (default), the device will subtract the homing offset (**object 607Ch**) from the counter and set the counter to the difference.

Table B.106 - 2098_h Object Description

Index	2098 _h
Name	Homing configuration
Object code	VAR
Data type	Unsigned8

Table B.107 - 2098_h Value Description

Sub-index	00 _h , Homing configuration
Meaning	Homing configuration
Access	Read-write
PDO mapping	—
Value range	0/1
Default value	1
Category	Yes

2099_h Index Offset

This object allows the setting of a position offset from the encoder index mark within a range of motor microsteps.

Table B.108 - 2099h Object Description

Index	2099 _h
Name	Index offset position
Object code	VAR
Data type	Unsigned8

Table B.109 - 2099_h Value Description

Sub-index	00 _h , Index offset position
Meaning	Set position offset encoder index by +/- motor
	steps
Access	Read-write
PDO mapping	—
Value range	-25600 to +25600
Default value	1
Category	Yes

2204_h Run Current

This object sets the percentage of full current at which the device will operate.

Table B.110 - 2204_h Object Description

Index	2204 _h
Name	Run current
Object code	VAR
Data type	Unsigned8

Table B.111 - 2204_h Value Description

Sub-index	00 _h , Run current
Meaning	Run current
Access	Read-write
PDO mapping	—
Value range	1 – 100 _d (%)
Default value	25 (%)

2205_h Hold Current

This object sets the percentage of full current at which the device will transition to when motion ceases.

Table B.112 - 2205_h Object Description

Index	2205 _h
Name	Hold current
Object code	VAR
Data type	Unsigned8

Table B.113 - 2205_h Value Description

Sub-index	00 _h , Hold current
Meaning	Hold current
Access	Read-write
PDO mapping	—
Value range	0 – 100 _d (%)
Default value	5 (%)
Category	Yes

2211_h Position Present Point Target

This object contains the position present point target.

Table B.114 - 2211h Object Description

Index	2211 _h
Name	Position present point target
Object code	VAR
Data type	Integer32

Table B.115 -	2211 _h	Value	Description
---------------	-------------------	-------	-------------

Sub-index	00 _h , Position present point target
Meaning	Position present point target
Access	Read-only
PDO mapping	—
Value range	±231
Default value	0
Category	—

2212_h Position Final Point Target

This object contains the position final point target.

Table B.116 - 2212_h Object Description

Index	2212 _h
Name	Position final point target
Object code	VAR
Data type	Integer32

Table B.117 - 2212_h Value Description

Sub-index	00 _h , Position final point target
Meaning	Position final point target
Access	Read-only
PDO mapping	—
Value range	±231
Default value	0
Category	—

2221_h Following Error

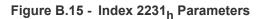
This object defines an action to take in the event of a following error (Idx 6041 bit 13).

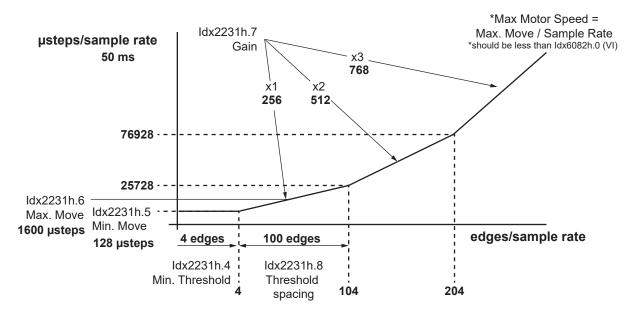
Table B.118 - 2221_h Object Description

Index	2221 _h
Name	Following error
Object code	VAR
Data type	Integer32

Table B.119 - 2221_h Value Description

Sub-index	00 _h , Number of entries
Meaning	Number of entries
Access	Read only
PDO mapping	—
Value range	—
Default value	01 _h
Category	_


Sub-index	01 _h , Following error reaction code
Meaning	Following error reaction code
Access	Read-only
PDO mapping	_
Value range	_
Default value	0 - 2
Category	—


Sub-index 01 _h value range		
Value	Value Action	
0	No action taken	
1	Post-move to correct for error after initial move	
2	Post-move to correct for error after initial move, then adjust for encoder position	

2231_h Following Mode Control

Index 2231_h has 9 subindexes which may be used to tune the motor's response to the encoder input. Subindexes 01 through 03 set the direction of rotation, sample rate, and delay before sending a target reached message.

The graph below shows how sub-indexes 04 through 08 impact the move profile. Every sample period, a relative move is sent to the controller per Figure B.15. Default values shown on graph.

Table B.120 - 2231_h Object Description

Index	2231 _h
Name	Encoder following mode control
Object code	ARRAY
Data type	—
Category	Optional

Table B.121 - 2231_h Entry Description

Sub-index	00 _b
Name	Number of entries
Access	Read only
PDO mapping	—
Value range	—
Default value	08 _h
Sub-index	01 _h
Name	Direction of rotation
Description	Sets the default rotational direction of the motor.
Access	Read-write
PDO mapping	—
Value range	00 _h - CW
	80 _h - CCW
Default value	00 _h

Sub-index	02 _h
Name	Sample rate
Description	Sets the time in milliseconds which the input is
	sampled.
Access	Read-write
PDO mapping	—
Value range	Unsigned16
Default value	50 _d

Sub-index	03 _h
Name	Target reached delay time
Description	Sets the time in milliseconds which the LMD will
	delay before triggering the target reached status
	bit (6041 _h bit 10).
Access	Read-write
PDO mapping	_
Value range	Unsigned16
Default value	1000 _d

Sub-index	04 _h
Name	Minimum Threshold
Description	Sets the number of encoder counts required to
	activate x1 gain. At or below this value will result in
	a minimal move of 4 µsteps/encoder edge.
Access	Read-write
PDO mapping	—
Value range	Signed16
Default value	4 _d
Sub-index	05 _h
Name	Minimum Move
Description	Defines the minimum distance in µsteps the motor
	will move provided the encoder count is greater
	than zero.
Access	Read-write
PDO mapping	—
Value range	Signed16
Default value	128 _d

Sub-index	06 _h
Name	Maximum Move
Description	Defines the maximum distance in µsteps the mo-
	tor will move within the specified sample time.
Access	Read-write
PDO mapping	—
Value range	Signed16
Default value	1600 _d

Sub-index	07 _h
Name	Gain
Description	The gain (µSteps/Encoder counts) that will occur
	between the min and max move values.
	There are 3 thresholds of gain (x1, x2, and x3).
	Based on the Encoder In threshold levels, the gain
	will be incriminated for the various thresholds. This
	gives variable gain potential.
Access	Read-write
PDO mapping	—
Value range	Signed16
Default value	256 _d

Sub-index	08 _h
Name	Threshold spacing
Description	Sets the various thresholds, in encoder edges, for encoder inputs. The lower the value, the faster the gain will increase. The faster encoder pulses are received, the faster the motor will move.
Access	Read-write
PDO mapping	
Value range	Signed16
Default value	100 _d

2401_h General Purpose User Variable

This object is a general purpose user variable which can be used to store 8-bits of data.

Table B.122 - 2401h Object Description

Index	2401 _h
Name	General purpose user variable
Object code	VAR
Data type	Integer32

Table B.123 - 2401_h Value Description

Sub-index	00 _h , General purpose user variable
Meaning	General purpose user variable
Access	Read-write
Value range	00 – FF _h
Default value	0

2402_h General Purpose User Variable

Table B.124 - 2402_h Object Description

Index	2402 _h
Name	32-bit general purpose variables
Object code	ARRAY
Data type	—
Category	Optional

Table B.125 - 2402_h Entry Description

Sub-index	00 _h
Name	Number of entries
Access	Read only
Value range	04 _h
Default value	08 _h

Sub-index	01 _h , General purpose user variable
-----------	---

Meaning	General purpose user variable	
Access	Read-write	
Value range	Unsigned32	
Default value	0	

Sub-index	02 _h , General purpose user variable
Meaning	General purpose user variable
Access	Read-write
Value range	Unsigned32
Default value	0
Out index.	
Sub-index	03 _h , General purpose user variable
Meaning	03 _h , General purpose user variable General purpose user variable
Meaning	General purpose user variable

2510_h Set NodelD or BAUD

Table B.126 - 2510_h Object Description

Index	2510 _h
Name	Set NodeID or BAUD
Object code	ARRAY
Data type	—
Category	Optional

Table B.127 - 2510_h Entry Description

Sub-index	00 _h
Name	Number of entries
Access	ro
Value range	04 _h
Default value	02 _h

Sub-index	01 _h , Set NodelD
Meaning	Set NodelD
Access	Read-write
Value range	Unsigned32
LowLimit	1
HighLimit	127

Sub-index	02 _h , Set BAUD
Meaning	Set BAUD
Access	Read-write
Value range	Unsigned32
LowLimit	0
HighLimit	8

2701_h hMT Enable

This object controls the enable/disable state of the Hybrid Motion Technology (hMT)control circuitry.

- Disabled = 00_h
- Enabled = 80_h

Object 2701h is only available on LMD closed loop models.

Table B.128 -	2701 _h	Object Des	cription
---------------	-------------------	-------------------	----------

Index	2701 _h
Name	Hybrid enable
Object code	VAR
Data type	Unsigned8

Sub-index	00 _h , Hybrid enable
Meaning	Hybrid enable
Access	Read-write
Value range	00 _h or 80 _h
Default value	00 _h
Category	Yes

2702_h hMT Configuration

This object sets the parameters of the hMT operation. The following parameters are set:

- Fixed/variable current (bit 7): hMT can operate using two current modes, fixed and variable. In fixed current mode, the device will operate using the settings of the run (ob-ject 2204h) and hold (object 2205h) current set parameters. In variable current mode, the device will adjust the current between the run and hold current settings to what is required to move the load at the desired velocity.
- 2. Control boundaries (bits 6 ... 5): hMT functions by closely monitoring the relationship between the rotor and stator of the motor to within set boundaries from 1.1 to 1.7 motor full steps. A lower setting gives enhanced torque performance. A higher setting delivers better speed performance.
- Make-up mode (bits 1 ... 0): If enabled, hMT control will make-up for lost steps in the move profile. This can occur at a fixed velocity of 2.5 MHz or at a speed preset using object 2703h.

Object 2701h is only available on LMD closed loop models.

Index	2702 _h
Name	hMT configuration
Object code	VAR
Data type	Unsigned8

Table B.130 - 2702_h Object Description

Table B.131 - 2702_h Value Description

Sub-index	00 _h , hMTechnology configuration
Meaning	hMT configuration
Access	Read-write
Value range	See Table 6.13 (Unsigned8)
Default value	A2 _h
Category	Yes

Table B.132 - Description of Clock Options Object 2032.01h

Bi	its	7	6	5	4	3	2	1	0
Fund	ction	cur_fv c_bnds X X X mu							
			С	urren	t mode				
Bit	0	Fixed cur	rent (d	efault)					
7	1	Variable of	current						
			Co	ontrol	bound	s			
Bit	Bit								
6	5								
0	0 0 1.1 full steps (best torque performance)								
0	1	1.3 full steps (default) (Best overall perfor-							
1	0	1.5 full steps mance)							
1	1	1.7 full steps (best speed performance)							
	Make-up mode								
Bit	Bit								
1	0								
0	0	Make-up disabled							
0	1	reserved							
1	0	Make-up velocity = 2.5 MHz (default)							
1	1 Make-up velocity = 2703h setting								

2703_h Make-up Velocity

This object defines the velocity for hybrid make-up (Object 2702h, bits 1 ... 0) if selected. The make-up period is determined using the equation:

Frequency = (x+2) * 50 ms where x is the setting of 2703_{h}

e.g., (1998+2) * 50 = 100000 steps/sec

Object 2703h is only available on LMD closed loop models.

Table B.133 - 2703h Object Description

Index	2703 _h
Name	Make-up velocity
Object code	VAR
Data type	Unsigned32

Table B.134 -	2703 _h	Value	Description
---------------	-------------------	-------	-------------

Sub-index	00 _h , Make-up velocity
Meaning	Make-up velocity
Access	Read-write
PDO mapping	—
Value range	Unsigned32
Default value	1998 _d (100000 steps/sec)
Category	Yes

2704_h Torque Velocity

This object defines the maximum velocity for Profile Torque mode.

Velocity = 12 Mhz (x+2) where x is the setting of 2703_{h}

e.g., 12 x 10⁶ / (98+2) = 120000 steps/sec @ torque (**Idx 6071**)

Idx 2704h is only available on LMD closed loop models.

Table B.135 - 2704_h Object Description

Index	2704 _h
Name	Torque velocity
Object code	VAR
Data type	Unsigned8

Table B.136 - 2704_h Value Description

Sub-index	00 _h , Torque velocity
Meaning	Torque velocity
Access	Read-write
PDO mapping	—
Value range	Unsigned8
Default value	98 _d (120000 steps/sec)
Category	Yes

2708_h Velocity Actual Filter

Object 2708_{h} takes a value of 0 to 10. It can be defined as 0 = no filtering and 10 = most filtering.

Because the Torque Velocity is computed and the encoder is sampled every millisecond, there can be fluctuation in the result. The filtering compensates for this fluctuation.

Table B.137 - 2708_h Object Description

Index	2708 _h
Name	Velocity Actual Filter
Object code	VAR
Data type	Unsigned8

Table B.138 - 2708_h Value Description

Sub-index	00 _h , Velocity Actual Filter
Meaning	Velocity Actual Filter
Access	Read-write
Value range	See table
Default value	0

Value	Notes/reading source	Filtering (ms)
0	hMT modes other than torque	No filtering
	Torque mode	256
1	Encoder	64
2	Encoder	128
3	Encoder	196
4	Encoder	256
8	Encoder	16
9	Encoder	24
10	Encoder	32

2710_h Locked Rotor Timeout Indicator

If the rotor is 'locked' for this period of time, the hMT status byte Idx2742_bit3 will be set to 1.

Table B.139 - 2710_h Object Description

Index	2710 _h			
Name	Locked rotor timeout			
Object code	VAR			
Data type	Unsigned16			

Table B.140 - 2710_h Value Description

Sub-index	00 _h , Locked rotor timeout			
Meaning	_ocked rotor timeout			
Access	ead-write			
Value range	0 (disabled) or 2 to 65535			
Default value	5000			
Category	Yes			

2711_h Locked Rotor Opcode

The Locked Rotor Opcode object defines the response of the product to a locked rotor condition.

Table B.141 - 2711_h Object Description

Index	2711 _h			
Name	Locked Rotor Opcode			
Object code	VAR			
Data type	Unsigned8			

Table B.142 - 2711_h Value Description

Sub-index	00 _h , Locked Rotor Opcode			
Meaning	ocked Rotor Opcode			
Access	Read-write			
Value range	0 to 3			
Default value	2			

Value	Locked rotor error response			
0	Reserved			
1	hMT statusword set, output h-bridge will not disable			
2	hMT statusword set, output h-bridge will disable			
3	hMT statusword set, output h-bridge will disable			

2712_h Following Error Opcode

The Following Error Opcode object defines the response of the product to a following error condition

Table B.143 - 2712_h Object Description

Index	2712 _h			
Name	Following Error Opcode			
Object code	VAR			
Data type	Unsigned8			

Sub-index	00 _h ,Following Error Opcode		
Meaning	Following Error Opcode		
Access	Read-write		
Value range	0 to 5		
Default value	0		

Value	Following error response
0	No action
1	Reserved
2	Output h-bridge will disable
3	Error set, output h-bridge will disable
4	Send emergency message, output h-bridge will disable
5	Error set, send emergency message, output h-bridge will disable

2740_h Clear Locked Rotor

This object is used to clear the locked rotor status flag. Sending 04_h will clear a locked rotor indication.

Table B.145 - 2740_h Object Description

Index	2740 _h			
Name	Clear locked rotor			
Object code	VAR			
Data type	Unsigned8			

Table B.146 - 2740_h Value Description

Sub-index	00 _h , Clear locked rotor			
Meaning	Clear locked rotor			
Access	Read-write			
PDO mapping	Yes, R_PDO			
Value range	Unsigned8			
Default value	—			
Category	Yes			

2741_h hMT Status (Filtered)

This object indicates the status of the hMT logic. This object may be filtered using **Idx 2743**. The purpose behind the filter is that the object is PDO mappable. Bit 4, hMT intervening, may cycle rapidly between states. If mapped to a PDO this can saturate the field-bus.

7	6	5	4	3	2	1	0
Factory	Reserved	Reserved	hMT intervening	Locked rotor	Reserved	Reserved	Error

Bit	Value	Meaning	
0	0	No error	
	1	hMT error state exists	
3	0	Rotor normal	
	1	Rotor is locked	
4	0	hMT not intervening	
1 hMT intervening		hMT intervening	
7 0 N/A		N/A	
	1	Factory alignment - This bit will always be 1	

Object 2741h is only available on LMD closed loop models.

Table B.147 - 2741_h Object Description

Index	2741 _h
Name	hMT status
Object code	VAR
Data type	Unsigned8

Table B.148 - 2741_h Value Description

Sub-index	00 _h , hMT status
Meaning	hMT status
Access	Read-only
PDO mapping	Yes, T_PDO
Value range	Unsigned8
Default value	80 _h
Category	—

2742_h hMT Status (Unfiltered)

This object indicates the status of the hMT logic.

7	6	5	4	3	2	1	0
Factory	Reserved	Reserved	hMT intervening	Locked rotor	Reserved	Reserved	Error

Bit	Value	Meaning	
0	0	No error	
	1	hMT error state exists	
3	0	Rotor normal	
	1	Rotor is locked	
4	0	hMT not intervening	
	1	hMT intervening	
7	0	N/A	
	1	Factory alignment - This bit will always be 1	

Object 2742h is only available on LMD closed loop models.

Table B.149 - 2742_h Object Description

Index	2742 _h
Name	hMT status
Object code	VAR
Data type	Unsigned8

Table B.150 - 2742_h Value Description

Sub-index	00 _h , hMT status
Meaning	hMT status
Access	Read-only
PDO mapping	—
Value range	Unsigned8
Default value	80 _h
Category	_

2743_h hMT Status Byte Filter

This object filters the status byte of the hMT logic.

7	6	5	4	3	2	1	0
Factory	Reserved	Reserved	hMT intervening	Locked rotor	Reserved	Reserved	Error
1	1	1	0	1	1	1	1

Object 2743h is only available on LMD closed loop models.

Table B.151 - 2743_h Object Description

Index	2743 _h
Name	hMT status filter
Object code	VAR
Data type	Unsigned8

Table B.152 - 2743_h Value Description

Sub-index	00 _h , hMT status filter
Meaning	hMT status filter
Access	Read-write
PDO mapping	—
Value range	Unsigned8
Default value	EF _h
Category	

2840_h Multi-turn Control Byte

The multi-turn control byte is used to read the status of the encoder and related power system.

Table B.153 - 2840_h Object Description

Index	2840 _h
Name	Multi-turn control byte
Object code	VAR
Data type	Integer8
Category	Optional

Table B.154 - 2840_h Entry Description

Sub-index	00 _h
Access	Read only
PDO mapping	Yes
Value range	Unsigned 8
Default value	0 _h

Bits		7	6	5	4	3	2	1	0
Function		clrstat	clrstat	X	Х	rstrt	Х	Х	Х
bit 3	rstrt	Restart state machine							
bit 6	clrstat	Clear 6041h bits 4 and 6							
bit 7	clrstat	Clear 6041h bits 0, 1, 2, 3, and 6							

2841_h Multi-turn Status Byte

The multi-turn status byte is used to read the status of the encoder and related power system.

Table B.155 - 2841_h Object Description

Index	2841 _h
Name	Multiturn status byte
Object code	VAR
Data type	Integer8
Category	Optional

Table B.156 - 2841_h Entry Description

Sub-index	00 _h
Access	Read only
PDO mapping	Yes
Value range	Unsigned 8
Default value	0 _h

Bits		7	6	5	4	3	2	1	0
Function		s-err	b-err	b-warn	oor	Х	er	Х	warn
bit 0	warn	Encoder	Encoder advisory						
bit 2	er	Encoder read/write error							
bit 4	oor	External battery voltage out of range advisory							
bit 5	b-warn	Internal voltage advisory							
bit 6	b-err	Voltage error							
bit 7	s-err	Startup error							

In the case of status, bits 0, 2, 6, or 7 will indicate that multi-turn encoder position is lost and a rehome of the system is recommended.

Details of Object Group 5000_h (Mfg Factory Specific)

Object group 5000_h contains objects reserved for factory use.

Details of Assignment Objects Group 6000_h

The objects in group 6000_h are operation specific. See Chapter 3 on page 47 for detailed information on these objects.

Warranty

For the latest warranty and product information, visit: <u>https://novantaims.com/warranty-and-dis-claimer/</u>

Document Revision History

LMD CANopen: LMD-CANOPEN-REV-E						
Date	Revision	Changes				
07/03/2013	V1.00, 07.2013	Initial release				
08/18/2014	V1.00, 08.2014	Updated to match firmware version 7.15. Notable changes include: hMT defaulted to an "off state, added a fourth RxPDO and TxPDO. Minor updates to indexes impacted by Firmware update.				
09/22/2014	LMD-CANOPEN- REV-B	Updated to match firmware version 7.16. Added Index 6077h: Demand Torque Actual Value.				
01/20/2019	LMD-CANOPEN- REV-C	Updated to support firmware release 7.23.12 This includes support for absolute encoder and encoder follower features.				
01/03/2020	LMD-CANOPEN- REV-D	Updates and corrections throughout.				
02/18/2022	LMD-CANOPEN- REV-E	Update to change Brand				

Novanta IMS is a part of the Precision Motion Group within Novanta, a leading technology company that delivers innovation to medical and advanced industrial OEMS. As standards, specifications, and designs may change, confirmation of the information given in this publication can be found in the product disclaimer and most recent product information, available online. https://novantaims.com/all-products/

© 2022 Novanta IMS. All rights reserved. Photos: Novanta IMS Print: Novanta IMS To provide feedback on Novanta IMS documentation, send an e-mail to: <u>documentation@imshome.com</u>

Novanta IMS

370 North Main Street Marlborough, CT 06447 Phone: (860) 295-6102 www.novantaims.com