1. Characteristic of Induction Motor

- The induction motor is classified into a single-phase motor and a three-phase motor according to the using power source. This motor always uses both auxiliary winding and condenser not only when starting but also during operation. Generally speaking, its starting torque is not so great, but its structure is simple and reliable. In addition, its connection is simple. It is suitable to use in houses and on factories. For a single-phase induction motor, be sure that the condenser indicated in the name plate should comply with the capacity of the motor.
- For a single-phase induction motor, it is not possible to reverse the direction of rotation within a short time during operation because of the inertia torque exerting adversely against the direction the motor is supposed to change to. Thus, stop the motor first and change the rotational direction next. In case you do not, the motor can be damaged.
- The power source of a single-phase motor includes U (100V 60.60Hz), C (200V 50/60Hz, 220V 50/60Hz, 230V 50Hz). Refer to (Fig. 1).

- The three-phase induction motor has simpler connection, and higher efficiency and reliability than the single-phase motor, because it can be driven by a three-phase power source directly. The three-phase motor is popular as a general-purpose motor. The power source for a three-phase motor includes H (220V 50/60Hz), M (380V 50/60Hz), Z (440V 50/60Hz). Refer to (Fig. 2).
- It is possible to use the motor for continuous rated operation.
- It is designed to be used in a single direction.
- The number of rated revolution of the motor varies depending on the load imposed on it.
- xIt is suitable for such operation that does not need the speed control.
- Its insulation class is E. Our UL conformance motor is class A.

2. Characteristic of Rotation and Torque

- Under a constant voltage, the relationship between the number of rotation and the torque is as shown in (Fig. 3). With no-load, the number of rotation roughly approximates the number of synchronous rotation, but as the load increases, the number of rotation decreases and reaches the torque TL. The stable zone is at this point.
- When the load is further increased and over the point TM, that is, the torque of the motor reaches the unstable zone, the motor stops and restriction electricity runs. As a result, the motor generates high heat, and then it can be damaged. Therefore, a safe operation is possible if only the motor is used within the stable zone of the load.

3. Characteristic of Voltage and Condenser

- The characteristic of voltage can be represented by the torque's characteristic about the applied voltage. The torque of induction motor changes in proportion to two times the voltage.
- The characteristic of torque also change according to the capacity of the condenser.
- As the capacity of the condenser boost, the starting torque and stalling torque increase. But if the capacity is increased by 2.5~3.0 folds, the operating torque decreases and the starting torque do not increase.
- As a simple method to increase the torque when the induction motor is short on torque, either the voltage or the condenser capacity can be increased to continue the operation. In this case, the loss input of the motor increases and the temperature rises rapidly.
- However, if the motor must be run with insufficient torque, take measures to let the motor release heat as much as possible and operate the motor while keeping the temperature of the motor's housing below 90 °C. Refer to (Fig. 4).

GENERAL SPECIFICATION OF INDUCTION MOTORS

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation Resistance</td>
<td>500MΩ or more when 500V megger is applied between the windings and the housing after rated motor operation under normal ambient temperature and humidity</td>
</tr>
<tr>
<td>Dielectric Strength</td>
<td>Sufficient to withstand 1500V at 50/60Hz, applied between the windings and the case after rated motor operation under normal ambient temperature and humidity</td>
</tr>
<tr>
<td>Temperature Rise</td>
<td>80°C or less measured by thermometer after rated motor operation (less than 45°C for motors with fan)</td>
</tr>
<tr>
<td>Temperature Class</td>
<td>Class B (130°C), UL approval motor class A (105°C)</td>
</tr>
<tr>
<td>Overheat Protection Device</td>
<td>Built-in thermal protector (automatic return type)</td>
</tr>
<tr>
<td>Ambient Temperature</td>
<td>-10°C~+40°C</td>
</tr>
<tr>
<td>Ambient Humidity</td>
<td>85% maximum (non-condensing)</td>
</tr>
</tbody>
</table>
INDUCTION MOTORS

K9G40N

- **Output**: 40W
- **Size**: 90mm
- **Lead Wire Type**: Single-phase

GEARHEADS

K9G10BX

- **Model**: K9G10BX
- **Output**: 10N.m
- **Frequency**: 50Hz

K9G40N

- **Model**: K9G40N
- **Output**: 40W
- **Frequency**: 50Hz

DECIMAL GEARHEAD

K9G40NC

- **Model**: K9G40NC
- **Output**: 10N.m
- **Frequency**: 50Hz

TECHNICAL SPECIFICATIONS

Model

<table>
<thead>
<tr>
<th>Model</th>
<th>Output (W)</th>
<th>Voltage (V)</th>
<th>Frequency (Hz)</th>
<th>Current (A)</th>
<th>Starting Torque (gfcm)</th>
<th>Running Torque (gfcm)</th>
<th>Speed (rpm)</th>
<th>Controller (AD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K9G40NU</td>
<td>40</td>
<td>220</td>
<td>60</td>
<td>0.47</td>
<td>2400</td>
<td>2000</td>
<td>1800</td>
<td>4</td>
</tr>
<tr>
<td>K9G40NC</td>
<td>40</td>
<td>220</td>
<td>60</td>
<td>0.42</td>
<td>2800</td>
<td>2000</td>
<td>1900</td>
<td>4</td>
</tr>
<tr>
<td>K9G40NH</td>
<td>40</td>
<td>230</td>
<td>60</td>
<td>0.53</td>
<td>2900</td>
<td>2000</td>
<td>1800</td>
<td>-</td>
</tr>
</tbody>
</table>

CONNECTION DIAGRAMS

- **K9G40N**
- **K9G10BX**

DIMENSIONS

K9G40N

- **Dimensions**: L: 116 mm, W: 106 mm, H: 56 mm
- **Weight**: 1.8 kg

K9G10BX

- **Dimensions**: L: 75 mm, W: 55 mm, H: 50 mm
- **Weight**: 0.5 kg

MOUNTING BOLT

- **Motor**
 - K9G40NU: M5, 6H
 - K9G40NC: M5, 6H
 - K9G40NH: M5, 6H

- **Gearhead**: M5, 6H

APPLICATION MODELS

- **K9G40NU**: 40, 220V
- **K9G40NC**: 40, 220V
- **K9G40NH**: 40, 230V

RATINGS FOR GEARHEADS

50Hz

<table>
<thead>
<tr>
<th>Model</th>
<th>Motor/Gearhead</th>
<th>Speed (rpm)</th>
<th>Voltage (V)</th>
<th>Output (W)</th>
<th>Frequency (Hz)</th>
<th>Continuous (gfcm)</th>
<th>Starting (gfcm)</th>
<th>Running (gfcm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K9G40NU</td>
<td>Single-phase</td>
<td>200</td>
<td>220</td>
<td>40</td>
<td>50</td>
<td>2400</td>
<td>2000</td>
<td>1800</td>
</tr>
<tr>
<td>K9G40NC</td>
<td>Single-phase</td>
<td>200</td>
<td>220</td>
<td>40</td>
<td>50</td>
<td>2800</td>
<td>2000</td>
<td>1900</td>
</tr>
<tr>
<td>K9G40NH</td>
<td>Single-phase</td>
<td>210</td>
<td>230</td>
<td>40</td>
<td>60</td>
<td>2900</td>
<td>2000</td>
<td>1800</td>
</tr>
</tbody>
</table>

60Hz

<table>
<thead>
<tr>
<th>Model</th>
<th>Motor/Gearhead</th>
<th>Speed (rpm)</th>
<th>Voltage (V)</th>
<th>Output (W)</th>
<th>Frequency (Hz)</th>
<th>Continuous (gfcm)</th>
<th>Starting (gfcm)</th>
<th>Running (gfcm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K9G40NU</td>
<td>Single-phase</td>
<td>200</td>
<td>230</td>
<td>40</td>
<td>50</td>
<td>2600</td>
<td>2000</td>
<td>1800</td>
</tr>
<tr>
<td>K9G40NC</td>
<td>Single-phase</td>
<td>200</td>
<td>230</td>
<td>40</td>
<td>60</td>
<td>2900</td>
<td>2000</td>
<td>1900</td>
</tr>
<tr>
<td>K9G40NH</td>
<td>Single-phase</td>
<td>210</td>
<td>240</td>
<td>40</td>
<td>60</td>
<td>3000</td>
<td>2000</td>
<td>1800</td>
</tr>
</tbody>
</table>

- **Gearhead and decimal gearhead are sold separately.**
- **The code in () of gearhead motor is for gear ratio.**
- **The code in () of gearhead indicates that the output shaft of the geared motor rotates in the same direction as the output shaft of the motor. Others indicate rotation in the opposite direction.**
- **Notes:** If you are to have less ratio than the ratio in the table, you can install the decimal gearhead, which has one tenth of the ratio, between the gearhead and the motor. In this case, the permissible torque is 10N.m/100kgf.cm.